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INTRODUCTION 
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Data 

In computing, data is information that has been translated into a form that is efficient for movement or 

processing 

 

Data Science 

Data science is an evolutionary extension of statistics capable of dealing with the massive amounts of data 

produced today. It adds methods from computer science to the repertoire of statistics. 

 

Benefits and uses of data science 
Data science and big data are used almost everywhere in both commercial and noncommercial Settings 

 Commercial companies in almost every industry use data science and big data to gain insights into 

their customers, processes, staff, completion, and products.

 Many companies use data science to offer customers a better user experience, as well as to cross-sell, 

up-sell, and personalize their offerings.

 Governmental organizations are also aware of data’s value. Many governmental organizations not only 

rely on internal data scientists to discover valuable information, but also share their data with the 

public.

 Nongovernmental organizations (NGOs) use it to raise money and defend their causes.

 Universities use data science in their research but also to enhance the study experience of their 

students. The rise of massive open online courses (MOOC) produces a lot of data, which allows 
universities to study how this type of learning can complement traditional classes.

 

Facets of data 
In data science and big data you’ll come across many different types of data, and each of them tends to require 

different tools and techniques. The main categories of data are these: 

 Structured

 Unstructured

 Natural language

 Machine-generated

 Graph-based

 Audio, video, and images

 Streaming

Let’s explore all these interesting data types. 

 
Structured data 

 Structured data is data that depends on a data model and resides in a fixed field within a record. As 
such, it’s often easy to store structured data in tables within databases or Excel files

 SQL, or Structured Query Language, is the preferred way to manage and query data that resides in 

databases.
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Unstructured data 

Unstructured data is data that isn’t easy to fit into a data model because the content is context-specific or 

varying. One example of unstructured data is your regular email 

 

Natural language 

 Natural language is a special type of unstructured data; it’s challenging to process because it requires 
knowledge of specific data science techniques and linguistics.
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 The natural language processing community has had success in entity recognition, topic recognition, 
summarization, text completion, and sentiment analysis, but models trained in one domain don’t 

generalize well to other domains.

 Even state-of-the-art techniques aren’t able to decipher the meaning of every piece of text.

 
Machine-generated data 

 Machine-generated data is information that’s automatically created by a computer, process, 
application, or other machine without human intervention.

 Machine-generated data is becoming a major data resource and will continue to do so.

 The analysis of machine data relies on highly scalable tools, due to its high volume and speed. 

Examples of machine data are web server logs, call detail records, network event logs, and telemetry.
 
 

 

Graph-based or network data 

 “Graph data” can be a confusing term because any data can be shown in a graph.

 Graph or network data is, in short, data that focuses on the relationship or adjacency of objects.

 The graph structures use nodes, edges, and properties to represent and store graphical data.

 Graph-based data is a natural way to represent social networks, and its structure allows  you  to 

calculate specific metrics such as the influence of a person and the shortest path between two people.
 
 

Audio, image, and video 

 Audio, image, and video are data types that pose specific challenges to a data scientist.

 Tasks that are trivial for humans, such as recognizing objects in pictures, turn out to be challenging for 

computers.

 MLBAM (Major League Baseball Advanced Media) announced in 2014 that they’ll increase video 

capture to approximately 7 TB per game for the purpose of live, in-game analytics.

 Recently a company called DeepMind succeeded at creating an algorithm that’s capable of learning 

how to play video games.

 This algorithm takes the video screen as input and learns to interpret everything via a complex 
of deep learning.

3 



CS3352 | FDS III SEM CSE 
 

 

 

Streaming data 

 The data flows into the system when an event happens instead of being loaded into a data store in a 
batch.

 Examples are the “What’s trending” on Twitter, live sporting or music events, and the stock market.

 

Data Science Process 
Overview of the data science process 

The typical data science process consists of six steps through which you’ll iterate, as shown in figure 

1. The first step of this process is setting a research goal. The main purpose here is making sure all the 

stakeholders understand the what, how, and why of the project. In every serious project this will result 

in a project charter. 

2. The second phase is data retrieval. You want to have data available for analysis, so this step includes 

finding suitable data and getting access to the data from the data owner. The result is data in its raw 

form, which probably needs polishing and transformation before it becomes usable. 

3. Now that you have the raw data, it’s time to prepare it. This includes transforming the data from a raw 

form into data that’s directly usable in your models. To achieve this, you’ll detect and correct different 

kinds of errors in the data, combine data from different data sources, and transform it. If you have 

successfully completed this step, you can progress to data visualization and modeling. 
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4. The fourth step is data exploration. The goal of this step is to gain a deep understanding of the data. 

You’ll look for patterns, correlations, and deviations based on visual and descriptive techniques. The 

insights you gain from this phase will enable you to start modeling. 

5. Finally, we get to model building (often referred to as “data modeling” throughout this book). It is now 

that you attempt to gain the insights or make the predictions stated in your project charter. Now is the 

time to bring out the heavy guns, but remember research has taught us that often (but not always) a 

combination of simple models tends to outperform one complicated model. If you’ve done this phase 

right, you’re almost done. 

6. The last step of the data science model is presenting your results and automating the analysis, if 

needed. One goal of a project is to change a process and/or make better decisions. You may still need 

to convince the business that your findings will indeed change the business process as expected. This 

is where you can shine in your influencer role. The importance of this step is more apparent in projects 

on a strategic and tactical level. Certain projects require you to perform the business process over and 

over again, so automating the project will save time. 

 

Defining research goals 
A project starts by understanding the what, the why, and the how of your project. The outcome should be a 

clear research goal, a good understanding of the context, well-defined deliverables, and a plan of action with a 

timetable. This information is then best placed in a project charter. 

 

Spend time understanding the goals and context of your research 

 An essential outcome is the research goal that states the purpose of your assignment in a clear and 
focused manner.

 Understanding the business goals and context is critical for project success.

 Continue asking questions and devising examples until you grasp the exact business expectations, 

identify how your project fits in the bigger picture, appreciate how your research is going to change 

the business, and understand how they’ll use your results

 

Create a project charter 

A project charter requires teamwork, and your input covers at least the following: 

 A clear research goal

 The project mission and context

 How you’re going to perform your analysis

 What resources you expect to use

 Proof that it’s an achievable project, or proof of concepts

 Deliverables and a measure of success

 A timeline
 

Retrieving data 
 The next step in data science is to retrieve the required data. Sometimes you need to go into the field 

and design a data collection process yourself, but most of the time you won’t be involved in this step.

 Many companies will have already collected and stored the data for you, and what they don’t have can 

often be bought from third parties.

 More and more organizations are making even high-quality data freely available for public and 
commercial use.

 Data can be stored in many forms, ranging from simple text files to tables in a database. The objective 

now is acquiring all the data you need.

 

Start with data stored within the company (Internal data) 
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 Most companies have a program for maintaining key data, so much of the cleaning work may already 
be done. This data can be stored in official data repositories such as databases, data marts, data 

warehouses, and data lakes maintained by a team of IT professionals.

 Data warehouses and data marts are home to preprocessed data, data lakes contain data in its natural or 

raw format.

 Finding data even within your own company can sometimes be a challenge. As companies grow, their 

data becomes scattered around many places. the data may be dispersed as people change positions and 

leave the company.

 Getting access to data is another difficult task. Organizations understand the value and sensitivity of 
data and often have policies in place so everyone has access to what they need and nothing more.

 These policies translate into physical and digital barriers called Chinese walls. These “walls” are 
mandatory and well-regulated for customer data in most countries.

 

External Data 

 If data isn’t available inside your organization, look outside your organizations. Companies provide 

data so that you, in turn, can enrich their services and ecosystem. Such is the case with Twitter, 

LinkedIn, and Facebook.

 More and more governments and organizations share their data for free with the world.

 A list of open data providers that should get you started.
 
 

Data Preparation (Cleansing, Integrating, Transforming Data) 
Your model needs the data in a specific format, so data transformation will always come into play. It’s a good 

habit to correct data errors as early on in the process as possible. However, this isn’t always possible in a 

realistic setting, so you’ll need to take corrective actions in your program. 

 

Cleansing data 

Data cleansing is a sub process of the data science process that focuses on removing errors in your data so 

your data becomes a true and consistent representation of the processes it originates from. 

 The first type is the interpretation error, such as when you take the value in your data for granted, like 
saying that a person’s age is greater than 300 years.

 The second type of error points to inconsistencies between data sources or against your company’s 

standardized values.

An example of this class of errors is putting “Female” in one table and “F” in another when they represent 

the same thing: that the person is female. 

 

Overview of common errors 
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Sometimes you’ll use more advanced methods, such as simple modeling, to find and identify data errors; 

diagnostic plots can be especially insightful. For example, in figure we use a measure to identify data points 

that seem out of place. We do a regression to get acquainted with the data and detect the influence of 

individual observations on the regression line. 
 

 

 

 

Data Entry Errors 

 Data collection and data entry are error-prone processes. They often require human intervention, and 
introduce an error into the chain.
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 Data collected by machines or computers isn’t free from errors. Errors can arise from human 
sloppiness, whereas others are due to machine or hardware failure.

 Detecting data errors when the variables you study don’t have many classes can be done by tabulating 
the data with counts.

 When you have a variable that can take only two values: “Good” and “Bad”, you can create a 

frequency table and see if those are truly the only two values present. In table the values “Godo” and 

“Bade” point out something went wrong in at least 16 cases.
 
 

Most errors of this type are easy to fix with simple assignment statements and if-thenelse 

rules: 

if x == “Godo”: 

x = “Good” 

if x == “Bade”: 

x = “Bad” 

 

Redundant Whitespace 

 Whitespaces tend to be hard to detect but cause errors like other redundant characters would.

 The whitespace cause the miss match in the string such as “FR ” – “FR”, dropping the observations 
that couldn’t be matched.

 If you know to watch out for them, fixing redundant whitespaces is luckily easy enough in most 

programming languages. They all provide string functions that will remove the leading and trailing 

whitespaces. For instance, in Python you can use the strip() function to remove leading and trailing 

spaces.

 

Fixing Capital Letter Mismatches 

Capital letter mismatches are common. Most programming languages make a distinction between “Brazil” 

and “brazil”. 

In this case you can solve the problem by applying a function that returns both strings in lowercase, such as 

.lower() in Python. “Brazil”.lower() == “brazil”.lower() should result in true. 

 

Impossible Values and Sanity Checks 

Here you check the value against physically or theoretically impossible values such as people taller than 3 

meters or someone with an age of 299 years. Sanity checks can be directly expressed with rules: 

check = 0 <= age <= 120 

 

Outliers 

An outlier is an observation that seems to be distant from other observations or, more specifically, one 

observation that follows a different logic or generative process than the other observations. The easiest way to 

find outliers is to use a plot or a table with the minimum and maximum values. 

The plot on the top shows no outliers, whereas the plot on the bottom shows possible outliers on the upper 

side when a normal distribution is expected. 
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Dealing with Missing Values 

Missing values aren’t necessarily wrong, but you still need to handle them separately; certain modeling 

techniques can’t handle missing values. They might be an indicator that something went wrong in your data 

collection or that an error happened in the ETL process. Common techniques data scientists use are listed in 

table 

 

Integrating data 

Your data comes from several different places, and in this substep we focus on integrating these different 

sources. Data varies in size, type, and structure, ranging from databases and Excel files to text documents. 

 

The Different Ways of Combining Data 

You can perform two operations to combine information from different data sets. 

 Joining

 Appending or stacking

 

Joining Tables 

 Joining tables allows you to combine the information of one observation found in one table with the 
information that you find in another table. The focus is on enriching a single observation.

 Let’s say that the first table contains information about the purchases of a customer and the other table 
contains information about the region where your customer lives.

 Joining the tables allows you to combine the information so that you can use it for your model, as 

shown in figure.
 
 

 

Figure. Joining two tables on the item and region key 
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To join tables, you use variables that represent the same object in both tables, such as a date, a country name, 

or a Social Security number. These common fields are known as keys. When these keys also uniquely define 

the records in the table they are called primary keys. 

The number of resulting rows in the output table depends on the exact join type that you use 

 

Appending Tables 

 Appending or stacking tables is effectively adding observations from one table to another table.

 One table contains the observations from the month January and the second table contains 

observations from the month February. The result of appending these tables is a larger one with the 
observations from January as well as February.

 
 

 

Figure. Appending data from tables is a common operation but requires an equal structure in the tables begin 

appended, 

 

Transforming data 

 
Certain models require their data to be in a certain shape. Transforming your data so it takes a suitable form 

for data modeling. 

 

Relationships between an input variable and an output variable aren’t always linear. Take, for instance, a 

relationship of the form y = aebx. Taking the log of the independent variables simplifies the estimation 

problem dramatically. Transforming the input variables greatly simplifies the estimation problem. Other times 

you might want to combine two variables into a new variable. 
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Reducing the Number of Variables 

 Having too many variables in your model makes the model difficult to handle, and certain techniques 
don’t perform well when you overload them with too many input variables. For instance, all the 

techniques based on a Euclidean distance perform well only up to 10 variables.

 Data scientists use special methods to reduce the number of variables but retain the maximum amount 

of data.
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Figure shows how reducing the number of variables makes it easier to understand the key values. It also 

shows how two variables account for 50.6% of the variation within the data set (component1 = 27.8% + 

component2 = 22.8%). These variables, called “component1” and “component2,” are both combinations of 

the original variables. They’re the principal components of the underlying data structure 

 

Turning Variables into Dummies 

 

 Dummy variables can only take two values: true(1) or false(0). They’re used to indicate the absence of 

a categorical effect that may explain the observation.

 In this case you’ll make separate columns for the classes stored in one variable and indicate it with 1 if 

the class is present and 0 otherwise.

 An example is turning one column named Weekdays into the columns Monday through Sunday. You 

use an indicator to show if the observation was on a Monday; you put 1 on Monday and 0 elsewhere.

 Turning variables into dummies is a technique that’s used in modeling and is popular with, but not 

exclusive to, economists.
 

Figure. Turning variables into dummies is a data transformation that breaks a variable that has multiple 

classes into multiple variables, each having only two possible values: 0 or 1 

 

Exploratory data analysis 

 
During exploratory data analysis you take a deep dive into the data (see figure below). Information 

becomes much easier to grasp when shown in a picture, therefore you mainly use graphical techniques to 

gain an understanding of your data and the interactions between variables. 

The goal isn’t to cleanse the data, but it’s common that you’ll still discover anomalies you missed before, 

forcing you to take a step back and fix them. 
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 The visualization techniques you use in this phase range from simple line graphs or histograms, as 
shown in below figure , to more complex diagrams such as Sankey and network graphs. 

 Sometimes it’s useful to compose a composite graph from simple graphs to get even more insight 
into the data   Other times the graphs can be animated or made interactive to make it easier and, 

let’s admit it, way more fun 
 
 

 

 

The techniques we described in this phase are mainly visual, but in practice they’re certainly not limited to 

visualization techniques. Tabulation, clustering, and other modeling techniques can also be a part of 

exploratory analysis. Even building simple models can be a part of this step. 

 

Build the models 
 With clean data in place and a good understanding of the content, you’re ready to build models with 

the goal of making better predictions, classifying objects, or gaining an understanding of the system 

that you’re modeling.

 This phase is much more focused than the exploratory analysis step, because you know what you’re 

looking for and what you want the outcome to be.

 

Building a model is an iterative process. The way you build your model depends on whether you go with 

classic statistics or the somewhat more recent machine learning school, and the type of technique you want to 

use. Either way, most models consist of the following main steps: 

 Selection of a modeling technique and variables to enter in the model

 Execution of the model

 Diagnosis and model comparison

 

Model and variable selection 

You’ll need to select the variables you want to include in your model and a modeling technique. You’ll need 

to consider model performance and whether your project meets all the requirements to use your model, as 

well as other factors: 

 Must the model be moved to a production environment and, if so, would it be easy to implement?

 How difficult is the maintenance on the model: how long will it remain relevant if left untouched?

 Does the model need to be easy to explain?

 

Model execution 

 Once you’ve chosen a model you’ll need to implement it in code.
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 Most programming languages, such as Python, already have libraries such as StatsModels or Scikit- 
learn. These packages use several of the most popular techniques.

 Coding a model is a nontrivial task in most cases, so having these libraries available can speed up the 
process. As you can see in the following code, it’s fairly easy to use linear regression with 

StatsModels or Scikit-learn

 Doing this yourself would require much more effort even for the simple techniques. The following 

listing shows the execution of a linear prediction model.
 
 

 

 

 

Model diagnostics and model comparison 

 You’ll be building multiple models from which you then choose the best one based on multiple 
criteria. Working with a holdout sample helps you pick the best-performing model.

 A holdout sample is a part of the data you leave out of the model building so it can be used to evaluate 
the model afterward.

 The principle here is simple: the model should work on unseen data. You use only a fraction of your 
data to estimate the model and the other part, the holdout sample, is kept out of the equation.

 The model is then unleashed on the unseen data and error measures are calculated to evaluate it.

 Multiple error measures are available, and in figure we show the general idea on comparing models. 
The error measure used in the example is the mean square error.

 

Formula for mean square error. 
 

Mean square error is a simple measure: check for every prediction how far it was from the truth, square this 

error, and add up the error of every prediction. 
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Above figure compares the performance of two models to predict the order size from the price. The first 

model is size = 3 * price and the second model is size = 10. 

 To estimate the models, we use 800 randomly chosen observations out of 1,000 (or 80%), without 
showing the other 20% of data to the model.

 Once the model is trained, we predict the values for the other 20% of the variables based on those for 

which we already know the true value, and calculate the model error with an error measure.

 Then we choose the model with the lowest error. In this example we chose model 1 because it has the 

lowest total error.

 

Many models make strong assumptions, such as independence of the inputs, and you have to verify that these 

assumptions are indeed met. This is called model diagnostics. 

 

Presenting findings and building applications 
 

 Sometimes people get so excited about your work that you’ll need to repeat it over and over again 
because they value the predictions of your models or the insights that you produced.

 This doesn’t always mean that you have to redo all of your analysis all the time. Sometimes it’s 

sufficient that you implement only the model scoring; other times you might build an application that 

automatically updates reports, Excel spreadsheets, or PowerPoint presentations. The last stage of the 

data science process is where your soft skills will be most useful, and yes, they’re extremely important.

 

Data mining 
Data mining is the process of discovering actionable information from large sets of data. Data mining uses 

mathematical analysis to derive patterns and trends that exist in data. Typically, these patterns cannot be 

discovered by traditional data exploration because the relationships are too complex or because there is too 

much data. 

These patterns and trends can be collected and defined as a data mining model. Mining models can be applied 

to specific scenarios, such as: 

 Forecasting: Estimating sales, predicting server loads or server downtime
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 Risk and probability: Choosing the best customers for targeted mailings, determining the probable 

break-even point for risk scenarios, assigning probabilities to diagnoses or other outcomes

 Recommendations: Determining which products are likely to be sold together, generating 

recommendations

 Finding sequences: Analyzing customer selections in a shopping cart, predicting next likely events

 Grouping: Separating customers or events into cluster of related items, analyzing and predicting 

affinities

 

Building a mining model is part of a larger process that includes everything from asking questions about the 

data and creating a model to answer those questions, to deploying the model into a working environment. This 

process can be defined by using the following six basic steps: 

1. Defining the Problem 

2. Preparing Data 

3. Exploring Data 

4. Building Models 

5. Exploring and Validating Models 

6. Deploying and Updating Models 

 

The following diagram describes the relationships between each step in the process, and the technologies in 

Microsoft SQL Server that you can use to complete each step. 

 

 

 

Defining the Problem 

 

The first step in the data mining process is to clearly define the problem, and consider ways that data can be 

utilized to provide an answer to the problem. 

 

This step includes analyzing business requirements, defining the scope of the problem, defining the metrics by 

which the model will be evaluated, and defining specific objectives for the data mining project. These tasks 

translate into questions such as the following: 

 What are you looking for? What types of relationships are you trying to find?

 Does the problem you are trying to solve reflect the policies or processes of the business?

 Do you want to make predictions from the data mining model, or just look for interesting patterns and 

associations?

 Which outcome or attribute do you want to try to predict?
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 What kind of data do you have and what kind of information is in each column? If there are multiple 

tables, how are the tables related? Do you need to perform any cleansing, aggregation, or processing to 

make the data usable?

 How is the data distributed? Is the data seasonal? Does the data accurately represent the processes of 

the business?

 

Preparing Data 

 The second step in the data mining process is to consolidate and clean the data that was identified in 
the Defining the Problem step.

 Data can be scattered across a company and stored in different formats, or may contain inconsistencies 

such as incorrect or missing entries.

 Data cleaning is not just about removing bad data or interpolating missing values, but about finding 

hidden correlations in the data, identifying sources of data that are the most accurate, and determining 

which columns are the most appropriate for use in analysis

 

Exploring Data 

Exploration techniques include calculating the minimum and maximum values, calculating mean and standard 

deviations, and looking at the distribution of the data. For example, you might determine by reviewing the 

maximum, minimum, and mean values that the data is not representative of your customers or business 

processes, and that you therefore must obtain more balanced data or review the assumptions that are the basis 

for your expectations. Standard deviations and other distribution values can provide useful information about 

the stability and accuracy of the results. 

 
 

Building Models 

The mining structure is linked to the source of data, but does not actually contain any data until you process it. 

When you process the mining structure, SQL Server Analysis Services generates aggregates and other 

statistical information that can be used for analysis. This information can be used by any mining model that is 

based on the structure. 

 

Exploring and Validating Models 

Before you deploy a model into a production environment, you will want to test how well the model performs. 

Also, when you build a model, you typically create multiple models with different configurations and test all 

models to see which yields the best results for your problem and your data. 

 

Deploying and Updating Models 

After the mining models exist in a production environment, you can perform many tasks, depending on your 

needs. The following are some of the tasks you can perform: 

 Use the models to create predictions, which you can then use to make business decisions.

 Create content queries to retrieve statistics, rules, or formulas from the model.

 Embed data mining functionality directly into an application. You can include Analysis Management 

Objects (AMO), which contains a set of objects that your application can use to create, alter, process, 

and delete mining structures and mining models.

 Use Integration Services to create a package in which a mining model is used to intelligently separate 

incoming data into multiple tables.

 Create a report that lets users directly query against an existing mining model

 Update the models after review and analysis. Any update requires that you reprocess the models.

 Update the models dynamically, as more data comes into the organization, and making constant 

changes to improve the effectiveness of the solution should be part of the deployment strategy.
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Data warehousing 
Data warehousing is the process of constructing and using a data warehouse. A data warehouse is constructed 

by integrating data from multiple heterogeneous sources that support analytical reporting, structured and/or ad 

hoc queries, and decision making. Data warehousing involves data cleaning, data integration, and data 

consolidations. 

 

Characteristics of data warehouse 

The main characteristics of a data warehouse are as follows: 

 Subject-Oriented

A data warehouse is subject-oriented since it provides topic-wise information rather than the 

overall processes of a business. Such subjects may be sales, promotion, inventory, etc 

 Integrated

A data warehouse is developed by integrating data from varied sources into a consistent format. 

The data must be stored in the warehouse in a consistent and universally acceptable manner in terms of 

naming, format, and coding. This facilitates effective data analysis. 

 Non-Volatile

Data once entered into a data warehouse must remain unchanged. All data is read-only. Previous 

data is not erased when current data is entered. This helps you to analyze what has happened and 

when. 

 Time-Variant

The data stored in a data warehouse is documented with an element of time, either explicitly or 

implicitly. An example of time variance in Data Warehouse is exhibited in the Primary Key, which 

must have an element of time like the day, week, or month. 

 

Database vs. Data Warehouse 

 

Although a data warehouse and a traditional database share some similarities, they need not be the same idea. 

The main difference is that in a database, data is collected for multiple transactional purposes. However, in a 

data warehouse, data is collected on an extensive scale to perform analytics. Databases provide real-time data, 

while warehouses store data to be accessed for big analytical queries. 

 

Data Warehouse Architecture 

Usually, data warehouse architecture comprises a three-tier structure. 

Bottom Tier 

The bottom tier or data warehouse server usually represents a relational database system. Back-end tools are 

used to cleanse, transform and feed data into this layer. 

Middle Tier 

The middle tier represents an OLAP server that can be implemented in two ways. 
The ROLAP or Relational OLAP model is an extended relational database management system that maps 

multidimensional data process to standard relational process. 

The MOLAP or multidimensional OLAP directly acts on multidimensional data and operations. 

Top Tier 

This is the front-end client interface that gets data out from the data warehouse. It holds various tools like 

query tools, analysis tools, reporting tools, and data mining tools. 

 

How Data Warehouse Works 

 

Data Warehousing integrates data and information collected from various sources into one comprehensive 

database. For example, a data warehouse might combine customer information from an organization’s point- 

of-sale systems, its mailing lists, website, and comment cards. It might also incorporate confidential 
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information about employees, salary information, etc. Businesses use such components of data warehouse to 

analyze customers. 

 

Data mining is one of the features of a data warehouse that involves looking for meaningful data patterns in 

vast volumes of data and devising innovative strategies for increased sales and profits. 

 

Types of Data Warehouse 

There are three main types of data warehouse. 

 

Enterprise Data Warehouse (EDW) 

This type of warehouse serves as a key or central database that facilitates decision-support services throughout 

the enterprise. The advantage to this type of warehouse is that it provides access to cross-organizational 

information, offers a unified approach to data representation, and allows running complex queries. 

 

Operational Data Store (ODS) 

This type of data warehouse refreshes in real-time. It is often preferred for routine activities like storing 

employee records. It is required when data warehouse systems do not support reporting needs of the business. 

 

Data Mart 

A data mart is a subset of a data warehouse built to maintain a particular department, region, or business unit. 

Every department of a business has a central repository or data mart to store data. The data from the data mart 

is stored in the ODS periodically. The ODS then sends the data to the EDW, where it is stored and used. 

 

 
 

Summary 
In this chapter you learned the data science process consists of six steps: 

 Setting the research goal—Defining the what, the why, and the how of your project in a project 

charter.

 Retrieving data—Finding and getting access to data needed in your project. This data is either found 
within the company or retrieved from a third party.

 Data preparation—Checking and remediating data errors, enriching the data with data from other data 

sources, and transforming it into a suitable format for your models.

 Data exploration—Diving deeper into your data using descriptive statistics and visual techniques.

 Data modeling—Using machine learning and statistical techniques to achieve your project goal.

 Presentation and automation—Presenting your results to the stakeholders and industrializing your 
analysis process for repetitive reuse and integration with other tools.
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Unit – II 
DESCRIBING DATA 

 

Types of Data - Types of  Variables -Describing Data with Tables and Graphs –Describing Data with 

Averages - Describing Variability - Normal Distributions and Standard (z) Scores 

 
 

THREE TYPES OF DATA 

 Qualitative data consist of words (Yes or No), letters (Y or N), or numerical codes (0 or 1) that 

represent a class or category.

 Ranked data consist of numbers (1st, 2nd, . . . 40th place) that represent relative standing within a 

group.

 Quantitative data consist of numbers (weights of 238, 170, . . . 185 lbs) that represent an amount or a 

count. To determine the type of data, focus on a single observation in any collection of observations

 

TYPES OF VARIABLES 

A variable is a characteristic or property that can take on different values. 

 The weights can be described not only as quantitative data but also as observations for a quantitative 

variable, since the various weights take on different numerical values.

 By the same token, the replies can be described as observations for a qualitative variable, since the 

replies to the Facebook profile question take on different values of either Yes or No.

 Given this perspective, any single observation can be described as a constant, since it takes on only 

one value.

 

Discrete and Continuous Variables 

Quantitative variables can be further distinguished as discrete or continuous. 

A discrete variable consists of isolated numbers separated by gaps. 

Discrete variables can only assume specific values that you cannot subdivide. Typically, you count discrete 

values, and the results are integers. 

Examples 

 Counts- such as the number of children in a family. (1, 2, 3, etc., but never 1.5)

 These variables cannot have fractional or decimal values. You can have 20 or 21 cats, but not 20.5

 The number of heads in a sequence of coin tosses.

 The result of rolling a die.

 The number of patients in a hospital.

 The population of a country.

While discrete variables have no decimal places, the average of these values can be fractional. For example, 

families can have only a discrete number of children: 1, 2, 3, etc. However, the average number of children 

per family can be 2.2. 

 

A continuous variable consists of numbers whose values, at least in theory, have no restrictions. 

Continuous variables can assume any numeric value and can be meaningfully split into smaller parts. 

Consequently, they have valid fractional and decimal values. In fact, continuous variables have an infinite 

number of potential values between any two points. Generally, you measure them using a scale. 

 

Examples of continuous variables include weight, height, length, time, and temperature. 

Durations, such as the reaction times of grade school children to a fire alarm; and standardized test scores, 

such as those on the Scholastic Aptitude Test (SAT). 
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Independent and Dependent Variables 

Independent Variable 

In an experiment, an independent variable is the treatment manipulated by the investigator. 

 Independent variables (IVs) are the ones that you include in the model to explain or predict changes in 
the dependent variable.

 Independent indicates that they stand alone and other variables in the model do not influence them.

 Independent variables are also known as predictors, factors, treatment variables, explanatory variables, 
input variables, x-variables, and right-hand variables—because they appear on the right side of the 
equals sign in a regression equation.

 It is a variable that stands alone and isn't changed by the other variables you are trying to measure.

For example, someone's age might be an independent variable. Other factors (such as what they eat, how 

much they go to school, how much television they watch) 

 

The impartial creation of distinct groups, which differ only in terms of the independent variable, has a most 

desirable consequence. Once the data have been collected, any difference between the groups can be 

interpreted as being caused by the independent variable. 

 

Dependent Variable 

When a variable is believed to have been influenced by the independent variable, it is called a dependent 

variable. In an experimental setting, the dependent variable is measured, counted, or recorded by the 

investigator. 

 The dependent variable (DV) is what you want to use the model to explain or predict. The values of 
this variable depend on other variables.

 It’s also known as the response variable, outcome variable, and left-hand variable. Graphs place 
dependent variables on the vertical, or Y, axis.

 a dependent variable is exactly what it sounds like. It is something that depends on other factors.

 

For example the blood sugar test depends on what food you ate, at which time you ate etc. 

Unlike the independent variable, the dependent variable isn’t manipulated by the investigator. Instead, it 

represents an outcome: the data produced by the experiment. 

 

Confounding Variable 

An uncontrolled variable that compromises the interpretation of a study is known as a confounding variable. 

Sometimes a confounding variable occurs because it’s impossible to assign subjects randomly to different 

conditions. 

 
 

Describing Data with Tables and Graphs 
Frequency Distributions for Quantitative Data 

 A frequency distribution is a collection of observations 
produced by sorting observations into classes and showing 

their frequency (f) of occurrence in each class.

 When observations are sorted into classes of single 

values, as in Table 2.1, the result is referred to as a frequency 
distribution for ungrouped data.

 The frequency distribution shown in Table 2.1 is only partially 

displayed because there are more than 100 possible values between 
the largest and smallest observations.

Frequency distribution table is much more informative if possible 
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observed values is less then 20. If more entry is observed then 

grouped data is used. 

 

Grouped Data 

According to their frequency of occurrence. When observations are sorted 

into classes of more than one value result is referred to as a frequency 

for grouped data. (Shown in table 2.2) 

 The general structure of this frequency distribution is the data’s are 
grouped into class intervals with 10 possible values each.

 The frequency ( f ) column shows the frequency of observations in

each class and, at the bottom, the total number of observations in all classes. 

 

GUIDELINES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CS3352 –| FDS Unit – II III SEM CSE 
 

 
 
 
 
 

 
 

OUTLIERS 

An outlier is an extremely high or extremely low data point relative to the nearest data point and the rest 

of the neighboring co-existing values in a data graph or dataset you're working with. 

 

Outliers are extreme values that stand out greatly from the overall pattern of values in a dataset or graph. 
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RELATIVE FREQUENCY DISTRIBUTIONS 

Relative frequency distributions show the frequency of each 

class as a part or fraction of the total frequency for the entire 

distribution. 

This type of distribution is especially helpful when you must 

compare two or more distributions based on different total 

numbers of observations. 

The conversion to relative frequencies allows a direct 

comparison of the shapes of two distributions without 

adjust other observations. 

 

Constructing Relative Frequency Distributions 

To convert a frequency distribution into a relative frequency 

distribution, divide the frequency for each class by the total f 

requency for the entire distribution. 

Table 2.5 illustrates a relative frequency distribution based on 

the weight distribution of Table 2.2. 
 

 

Percentages or Proportions 

Some people prefer to deal with percentages rather than proportions because percentages usually lack 

decimal points. A proportion always varies between 0 and 1, whereas a percentage always varies between 

0 percent and 100 percent. 

To convert the relative frequencies, multiply each proportion by 100; that is, move the decimal point two 

places to the right. 

 

CUMULATIVE FREQUENCY DISTRIBUTIONS 

Cumulative frequency distributions show the total number of observations in each class and in all lower- 

ranked classes. 

Cumulative frequencies are usually converted, in turn, to cumulative percentages. Cumulative percentages 

are often referred to as percentile ranks. 

 

Constructing Cumulative Frequency Distributions 

To convert a frequency distribution into a cumulative frequency distribution, add to the frequency of each 

class the sum of the frequencies of all classes ranked below it. 
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Cumulative Percentages 

As has been suggested, if relative standing within a distribution is particularly important, then cumulative 

frequencies are converted to cumulative percentages 

To obtain this cumulative percentage, the cumulative frequency of the class should be divided by the total 

frequency of the entire distribution. 

 

Percentile Ranks 

When used to describe the relative position of any score within its parent distribution, cumulative 

percentages are referred to as percentile ranks. 

The percentile rank of a score indicates the percentage of scores in the entire distribution with similar or 

smaller values than that score. Thus a weight has a percentile rank of 80 if equal or lighter weights 

constitute 80 percent of the entire distribution. 

 
 

FREQUENCY DISTRIBUTIONS FOR QUALITATIVE (NOMINAL) DATA 

Frequency distributions for qualitative data are easy to construct. 

Simply determine the frequency with which observations occupy 

Each class, and report these frequencies as shown in Table 2.7 for 

the Face book profile survey 

 

Qualitative data have an ordinal level of measurement because 

Observations can be ordered from least to most, that order should 

be preserved in the frequency table 

 

Relative and Cumulative Distributions for Qualitative Data 

Frequency distributions for qualitative variables can always be converted into relative frequency 

distributions. 

if measurement is ordinal because observations can be ordered from least to most, cumulative frequencies 

(and cumulative percentages) can be used. 
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GRAPHS 

 

Data can be described clearly and concisely with the aid of a well-constructed frequency distribution. And 

data can often be described even more vividly by converting frequency distributions into graphs. 

 

GRAPHS FOR QUANTITATIVE DATA 

Histograms 

A bar-type graph for quantitative data. The common boundaries between adjacent bars emphasize the 

continuity of the data, as with continuous variables. 

A histogram is a display of statistical information that uses rectangles to show the frequency of data items 

in successive numerical intervals of equal size. 

 

Important features of histograms 

 Equal units along the horizontal axis (the X axis, or abscissa) reflect the various class intervals of the 

frequency distribution.

 Equal units along the vertical axis (the Y axis, or ordinate) reflect increases in frequency. (The units 

along the vertical axis do not have to be the same width as those along the horizontal axis.)

 The intersection of the two axes defines the origin at which both numerical scales equal 0.

 Numerical scales always increase from left to right along the horizontal axis and from bottom to top 
along the vertical axis

 The body of the histogram consists of a series of bars whose heights reflect the frequencies for the 
various classes.

 The adjacent bars in histograms have common boundaries that emphasize the continuity of 

quantitative data for continuous variables.

 The introduction of gaps between adjacent bars would suggest an artificial disruption in the data more 

appropriate for discrete quantitative variables or for qualitative variables.

 

 
Figure: Histogram 
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Frequency Polygon 

An important variation on a histogram is the frequency polygon, or line graph. Frequency polygons may 

be constructed directly from frequency distributions. 

 

Step-by-step transformation of a histogram into a frequency polygon 

 

A. This panel shows the histogram for the weight distribution. 

B. Place dots at the midpoints of each bar top or, in the absence of bar tops, at midpoints for classes on 

the horizontal axis, and connect them with straight lines. 

C. c. Anchor the frequency polygon to the horizontal axis. First, extend the upper tail to the midpoint of 

the first unoccupied class on the upper flank of the histogram. Then extend the lower tail to the 

midpoint of the first unoccupied class on the lower flank of the histogram. Now all of the area under 

the frequency polygon is enclosed completely. 

D. Finally, erase all of the histogram bars, leaving only the frequency polygon. 
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Stem and Leaf Displays 

Another technique for summarizing quantitative data is a stem and leaf display. Stem and leaf displays are 

ideal for summarizing distributions, such as that for weight data, without destroying the identities of 

individual observations. 

 

Constructing Stem and Leaf Display 

 

The leftmost panel of table re-creates the weights. 
To construct the stem and leaf display for the table given below, first note that, when counting by tens, the 

weights range from the 130s to the 240s. 

Arrange a column of numbers, the stems, beginning with 13 (representing the 130s) and ending with 24 

(representing the 240s). Draw a vertical line to separate the stems, which represent multiples of 10, from the 

space to be occupied by the leaves, which represent multiples of 1. 

 

For example 

Enter each raw score into the stem and leaf display. As suggested by the shaded coding in Table 2.9, the first 

raw score of 160 reappears as a leaf of 0 on a stem of 16. The next raw score of 193 reappears as a leaf of 3 on 

a stem of 19, and the third raw score of 226 reappears as a leaf of 6 on a stem of 22, and so on, until each raw 

score reappears as a leaf on its appropriate stem. 
 
 

 

 
TYPICAL SHAPES 

Whether expressed as a histogram, a frequency polygon, or a stem and leaf display, an important 

characteristic of a frequency distribution is its shape. Below figure shows some of the more typical shapes for 

smoothed frequency polygons (which ignore the inevitable irregularities of real data). 
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A GRAPH FOR QUALITATIVE (NOMINAL) DATA 

 As with histograms, equal segments along the horizontal axis are allocated to the different words or 

classes that appear in the frequency distribution for qualitative data. Likewise, equal segments along 

the vertical axis reflect increases in frequency. The body of the bar graph consists of a series of bars 

whose heights reflect the frequencies for the various words or classes.

 A person’s answer to the question “Do you have a Facebook profile?” is either Yes or No, not some 

impossible intermediate value, such as 40 percent Yes and 60 percent No.

 Gaps are placed between adjacent bars of bar graphs to emphasize the discontinuous nature of 
qualitative data.

 

MISLEADING GRAPHS 

Graphs can be constructed in an unscrupulous manner to support a particular point of view. 
Popular sayings says, including “Numbers don’t lie, but statisticians do” and “There are three kinds of lies— 

lies, damned lies, and statistics.” 
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Describing Data with Averages 

MODE 

The mode reflects the value of the most frequently occurring score. 

In other words 

A mode is defined as the value that has a higher frequency in a given set of values. It is the value that appears 

the most number of times. 

Example: 

In the given set of data: 2, 4, 5, 5, 6, 7, the mode of the data set is 5 since it has appeared in the set twice. 

 

Types of Modes 

Bimodal, Trimodal & Multimodal (More than one mode) 

 When there are two modes in a data set, then the set is called bimodal

For example, The mode of Set A = {2,2,2,3,4,4,5,5,5} is 2 and 5, because both 2 and 5 is repeated three times 

in the given set. 

 When there are three modes in a data set, then the set is called trimodal

For example, the mode of set A = {2,2,2,3,4,4,5,5,5,7,8,8,8} is 2, 5 and 8 

 When there are four or more modes in a data set, then the set is called multimodal

 

Example: The following table represents the number of wickets taken by a bowler in 10 matches. Find the 

mode of the given set of data. 
 
 

 

It can be seen that 2 wickets were taken by the bowler frequently in different matches. Hence, the mode of the 

given data is 2. 

 

MEDIAN 

The median reflects the middle value when observations are ordered from least to most. 
The median splits a set of ordered observations into two equal parts, the upper and lower halves. 

 

Finding the Median 

 Order scores from least to most.

 If the total number of observation given is odd, then the formula to calculate the median is: 

Median = {(n+1)/2}th term / observation

 If the total number of observation is even, then the median formula is: 

Median = 1/2[(n/2)th term + {(n/2)+1}th term ]

 
Example 1: 

 

Find the median of the following: 

 

4, 17, 77, 25, 22, 23, 92, 82, 40, 24, 14, 12, 67, 23, 29 
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Solution: 

n= 15 

When we put those numbers in the order we have: 

 

4, 12, 14, 17, 22, 23, 23, 24, 25, 29, 40, 67, 77, 82, 92, 

 

Median = {(n+1)/2}th term 

= (15+1)/2 

=8 

The 8th term in the list is 24 

The median value of this set of numbers is 24. 

 

Example 2: 

Find the median of the following: 
9,7,2,11,18,12,6,4 

 

Solution 

n=8 

When we put those numbers in the order we have: 

2, 4, 6, 7, 9,11, 12, 18 

 

Median = 1/2[(n/2)th term + {(n/2)+1}th term ] 

 

= ½ [(8/2) term + ((8/2)+1)term] 

=1/2[4th term+5th term] (in our list 4th term is 7 and 5th term is 9) 

= ½[7+9] 

=1/2(16) 

=8 

The median value of this set of numbers is 8. 

 

MEAN 

The mean is found by adding all scores and then dividing by the number of scores. 
 

Mean is the average of the given numbers and is calculated by dividing the sum of given numbers by the total 

number of numbers. 
 

 

Types of means 

 Sample mean

 Population mean

 

Sample Mean 

The sample mean is a central tendency measure. The arithmetic average is computed using samples or random 

values taken from the population. It is evaluated as the sum of all the sample variables divided by the total 

number of variables. 
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Population Mean 

The population mean can be calculated by the sum of all values in the given data/population divided by a total 

number of values in the given data/population. 

 
AVERAGES FOR QUALITATIVE AND RANKED DATA 

Mode 

The mode always can be used with qualitative data. 

Median 

The median can be used whenever it is possible to order qualitative data from least to most because the level 

of measurement is ordinal. 
 

 
RANGE 

Describing Variability 

The range is the difference between the largest and smallest scores. 
The range in statistics for a given data set is the difference between the highest and lowest values. For 

example, if the given data set is {2,5,8,10,3}, then the range will be 10 – 2 = 8. 

Example 1: Find the range of given observations: 32, 41, 28, 54, 35, 26, 23, 33, 38, 40. 

Solution: Let us first arrange the given values in ascending order. 

23, 26, 28, 32, 33, 35, 38, 40, 41, 54 
Since 23 is the lowest value and 54 is the highest value, therefore, the range of the observations will be; 

Range (X) = Max (X) – Min (X) 

= 54 – 23 

= 31 

 

VARIANCE 

Variance is a measure of how data points differ from the mean. A variance is a measure of how far a set of 

data (numbers) are spread out from their mean (average) value. 

Formula 

σ = Σ(x-μ)2 or 

Variance = (Standard deviation)2= σ2   
= > σ 2= Σ(x-μ)2 /n 

the values of all scores must be added and then divided by the total number of scores. 

Example 

X = 5, 8, 6, 10, 12, 9, 11, 10, 12, 7 

Solution 

Mean = sum (x)/ n 

n= 10 

sum (x) = 5+8+6+10+12+9+11+10+12+ 7 
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= 90 

Mean=> μ = 90 / 10 = 9 

Deviation from mean 

x- μ = -4, -1, -3, 1, 3, 0, 2,1,3,-2 

 

(x-μ)2 = 16,1,9,1,9,0,4,1,9,4 

 

Σ(x-μ)2 = 16+1+9+1+9+0+4+1+9+4 

=54 

 

σ 2= Σ(x-μ)2 /n 

 

=54/10 

= 5.4 

 

STANDARD DEVIATION 

The standard deviation, the square root of the mean of all squared deviations from the mean, that is, 

Standard deviation = √variance 

Standard Deviation: A rough measure of the average (or standard) amount by which scores deviate 

 

Standard Deviation: A Measure of Distance 

The mean is a measure of position, but the standard deviation is a measure of distance (on either side of the 

mean of the distribution). 

 

Sum of Squares (SS) 

Calculating the standard deviation requires that we obtain first a value for the variance. However, calculating 

the variance requires, in turn, that we obtain the sum of the squared deviation scores. 

The sum of squared deviation scores or more simply the sum of squares, symbolized by SS 
 
 

“The sum of squares equals the sum of all squared deviation scores.” You can reconstruct this formula by 

remembering the following three steps: 

1. Subtract the population mean, μ, from each original score, X, to obtain a deviation score, X − μ. 

2. Square each deviation score, (X − μ)2, to eliminate negative signs. 

3. Sum all squared deviation scores, Σ (X − μ)2. 
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Sum of Squares Formulas for Sample 

Sample notation can be substituted for population notation in the above two formulas without causing any 

essential changes: 
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DEGREES OF FREEDOM (df) 

 Degrees of freedom (df) refers to the number of values that are free to vary, given one or more 
mathematical restrictions, in a sample being used to estimate a population characteristic. 

 Degrees of freedom are the number of independent variables that can be estimated in a statistical 

analysis. These values of these variables are without constraint, although the values do impost 

restrictions on other variables if the data set is to comply with estimate parameters. 

 Degrees of Freedom (df ) The number of values free to vary, given one or more mathematical 

restrictions. 

 

Formula 

Degree of freedom df = n-1 

 

Example 

Consider a data set consists of five positive integers. The sum of the five integers must be the multiple of 6. 

The values are randomly selected as 3, 8, 5, and 4. 

The sum of this for values is 20. So we have to choose the fifth integer to make the sum divisible by 6. 

Therefore the fifth element is 10. 

 

The number of degrees of Degrees of Freedom (df ) The number of values free to vary, given one or more 

mathematical restrictions. Freedom—in the numerator, as in the formulas for s2 and s. In fact, we can use 

degrees of freedom to rewrite the formulas for the sample variance and standard deviation: 

 
INTERQUARTILE RANGE (IQR) 

 

The interquartile range (IQR), is simply the range for the middle 50 percent of the scores. More specifically, 

the IQR equals the distance between the third quartile (or 75th percentile) and the first quartile (or 25th 

percentile), that is, after the highest quarter (or top 25 percent) and the lowest quarter (or bottom 25 percent) 

have been trimmed from the original set of scores. Since most distributions are spread more widely in their 

extremities than their middle, the IQR tends to be less than half the size of the range. 

 

Simply, The IQR describes the middle 50% of values when ordered from lowest to highest. To find the 

interquartile range (IQR), first find the median (middle value) of the lower and upper half of the data. These 

values are quartile 1 (Q1) and quartile 3 (Q3). The IQR is the difference between Q3 and Q1. 
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Normal Distributions and Standard (z) Scores 
THE NORMAL CURVE 

The normal distribution is a continuous probability distribution that is symmetrical on both sides of the mean, 

so the right side of the center is a mirror image of the left side. 

 

Properties of the Normal Curve 

 The normal curve is a theoretical curve defined for a continuous variable, as described in Section 1.6, 
and noted for its symmetrical bell-shaped form, as revealed in below figure 

 Because the normal curve is symmetrical, its lower half is the mirror image of its upper half. 

 The normal curve peaks  above a point midway along the horizontal spread and then tapers off 

gradually in either direction from the peak (without actually touching the horizontal axis, since, in 

theory, the tails of a normal curve extend infinitely far). 

 The values of the mean, median (or 50th percentile), and mode, located at a point midway along the 
horizontal spread, are the same for the normal curve. 

 

Properties of a normal distribution 

 The mean, mode and median are all equal. 

 The curve is symmetric at the center (i.e. around the mean, μ). 

 Exactly half of the values are to the left of center and exactly half the values are to the right. 

 The total area under the curve is 1. 
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Different Normal Curves 

As a theoretical exercise, it is instructive to note the various types of normal curves that are produced 

by an arbitrary change in the value of either the mean (μ) or the standard deviation (σ). 

Obvious differences in appearance among normal curves are less important than you might suspect. 

Because of their common mathematical origin, every normal curve can be interpreted in exactly the same way 

once any distance from the mean is expressed in standard deviation units. 

 
 

z SCORES 
 

A z score is a unit-free, standardized score that, regardless of the original units of measurement, indicates how 

many standard deviations a score is above or below the mean of its distribution. 

 

A z score can be defined as a measure of the number of standard deviations by which a score is below or 

above the mean of a distribution. In other words, it is used to determine the distance of a score from the mean. 

If the z score is positive it indicates that the score is above the mean. If it is negative then the score will be 

below the mean. However, if the z score is 0 it denotes that the data point is the same as the mean. 

 

To obtain a z score, express any original score, whether measured in inches, milliseconds, dollars, IQ points, 

etc., as a deviation from its mean (by subtracting its mean) and then split this deviation into standard deviation 

units (by dividing by its standard deviation), 
 
 

 

Where X is the original score and μ and σ are the mean and the standard deviation, respectively, for the 

normal distribution of the original scores. Since identical units of measurement appear in both the numerator 
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and denominator of the ratio for z, the original units of measurement cancel each other and the z score 

emerges as a unit-free or standardized number, often referred to as a standard score. 

 

A z score consists of two parts: 

1. A positive or negative sign indicating whether it’s above or below the mean; and 

2. A number indicating the size of its deviation from the mean in standard deviation units. 

 

Converting to z Scores 

Example 

Suppose on a GRE test a score of 1100 is obtained. The mean score for the GRE test is 1026 and the 

population standard deviation is 209. In order to find how well a person scored with respect to the score of an 

average test taker, the z score will have to be determined. 
 

The steps to calculate the z score are as follows: 

 Step 1: Write the value of the raw score in the z score equation. z = (1100−μ) /σ 

 Step 2: Write the mean and standard deviation of the population in the z score formula. 

z = (1100−1026) / 209 

 Step 3: Perform the calculations to get the required z score. z = 0.345 

 Step 4: A z score table can be used to find the percentage of test-takers that are below the score of the 

person. Using the first two digits of the z score, determine the row containing these digits of the z 

table. Now using the 2nd digit after the decimal, find the corresponding column. The intersection of 

this row and column will give a value. As shown below, this value will be 0.6368 for the given 

example. 

 Step 5: Use the value from step 5 and multiply it by 100 to get the required percentage. 0.6368 * 100 = 

63.68%. This shows that 63.68% of test-takers scores are lesser than the given raw score. 

 

STANDARD NORMAL CURVE 

If the original distribution approximates a normal curve, then the shift to standard or z scores will always 

produce a new distribution that approximates the standard normal curve. This is the one normal curve for 

which a table is actually available. 

 

Although there is an infinite number of different normal curves, each with its own mean and standard 

deviation, there is only one standard normal curve, with a mean of 0 and a standard deviation of 1. 

For a standard normal curve 

Mean = 0 

Standard deviation = 1 

 
 

Standard Normal Table 

The standard normal table consists of columns of z scores coordinated with columns of proportions 

 

Using the Top Legend of the Table 

Notice that columns are arranged in sets of three, designated as A, B, and C in the legend at the top of the 

table. When using the top legend, all entries refer to the upper half of the standard normal curve. The entries 

in column A are z scores, beginning with 0.00 and ending with 4.00 
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Given a z score of zero or more, columns B and C indicate how the z score splits the area in the upper half of 

the normal curve. As suggested by the shading in the top legend, column B indicates the proportion of area 

between the mean and the z score, and column C indicates the proportion of area beyond the z score, in the 

upper tail of the standard normal curve. 

 

Using the Bottom Legend of the Table 

Now the columns are designated as A′, B′, and C′ in the legend at the bottom of the table. When using the 

bottom legend, all entries refer to the lower half of the standard normal curve. 

A negative z score, columns B′ and C′ indicate how that z score splits the lower half of the normal curve. As 

suggested by the shading in the bottom legend of the table, column B′ indicates the proportion of area between 

the mean and the negative z score, and column C′ indicates the proportion of area beyond the negative z score, 

in the lower tail of the standard normal curve. 
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FINDING PROPORTIONS 

Finding Proportions for One Score 

 Sketch a normal curve and shade in the target area, 

 Plan your solution according to the normal table. 

 Convert X to z. 
 

 

 Find the target area. 

 

Finding Proportions between Two Scores 

 Sketch a normal curve and shade in the target area, (example, find proportion between 245 
to 255) 

 Plan your solution according to the normal table. 

 Convert X to z by expressing 255 as 

 

 

 

 Find the target area. 
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FINDING SCORES 

So far, we have concentrated on normal curve problems for which Table A must be consulted to find 

the unknown proportion (of area) associated with some known score or pair of known scores 

Now we will concentrate on the opposite type of normal curve problem for which Table A must be 

consulted to find the unknown score or scores associated with some known proportion. 

For this type of problem requires that we reverse our use of Table A by entering proportions in 

columns B, C, B′, or C′ and finding z scores listed in columns A or A′. 

 

Finding One Score 

 Sketch a normal curve and, on the correct side of the mean, draw a line representing the target 

score, as in figure 
 
 

 

It’s often helpful to visualize the target score as splitting the total area into two sectors—one to the left of 

(below) the target score and one to the right of (above) the target score 

 

 Plan your solution according to the normal table. 

In problems of this type, you must plan how to find the z score for the target score. Because the target score is 

on the right side of the mean, concentrate on the area in the upper half of the normal curve, as described in 

columns B and C. 

 Find z. 

 Convert z to the target score. 

 

When converting z scores to original scores, you will probably find it more efficient to use the following 

equation 
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Finding Two Scores 

 Sketch a normal curve. On either side of the mean, draw two lines representing the two target scores, 
as in figure 

 

 

 Plan your solution according to the normal table. 

 Find z. 

 Convert z to the target score. 

 

Points to Remember 
1. range = largest value – smallest value in a list 
2. class interval = range / desired no of classes 

3. relative frequency = frequency (f)/ε(f) 

4. Cumulative frequency -  add to the frequency of each class the sum of the frequencies of all 

classes ranked below it. 

5. Cumulative percentage = (f/cumulative f)*100 

6. Histograms 

7. Construction of frequency polygon 

8. Stem and leaf display 

9. Mode - The value of the most frequent score. 

10. For odd no of terms Median = {(n+1)/2}th term / observation. For even no of terms Median 

= 1/2[(n/2)th term + {(n/2)+1}th term ] 

11. Mean = sum of all scores / number of scores 
 

Variance σ = Σ(x-μ)2 or 

Variance = (Standard deviation)2= σ2   
= > σ 2= Σ(x-μ)2 /n 

12. Range (X) = Max (X) – Min (X) 
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13. Degree of freedom df = n-1 

14. Types of normal curve 

 

 
15. z – score 
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16. Standard normal curve; mean = 0, standard deviation = 1 

17. Finding proportion 
 

18. Finding proportion 

1. For one score 

 

2. For between two score 
 

19. Finding scores 

 

20. Finding scores – one score 

 

Two scores 
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Unit – III 

DESCRIBING RELATIONSHIPS 

Correlation – Scatter plots – correlation coefficient for quantitative data – computational formula for correlation 

coefficient – Regression – regression line – least squares regression line – Standard error of estimate – 

interpretation of r2 – multiple regression equations – regression towards the mean 

 

Correlation 

Correlation refers to a process for establishing the relationships between two variables. You learned a way to 

get a general idea about whether or not two variables are related, is to plot them on a “scatter plot”. While there 

are many measures of association for variables which are measured at the ordinal or higher level of 

measurement, correlation is the most commonly used approach. 

 

Types of Correlation 

 Positive Correlation – when the values of the two variables move in the same direction so that an 

increase/decrease in the value of one variable is followed by an increase/decrease in the value of the 

other variable. 

 Negative Correlation – when the values of the two variables move in the opposite direction so that an 

increase/decrease in the value of one variable is followed by decrease/increase in the value of the other 
variable. 

 No Correlation – when there is no linear dependence or no relation between the two variables. 

 

SCATTERPLOTS 

A scatter plot is a graph containing a cluster of dots that represents all pairs of scores. In other words 

Scatter plots are the graphs that present the relationship between two variables in a data-set. It represents data 

points on a two-dimensional plane or on a Cartesian system. 

 

Construction of scatter plots 

 The independent variable or attribute is plotted on the X-axis. Fig 6.1 

 The dependent variable is plotted on the Y-axis. 
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 Use each pair of scores to locate a dot within the scatter plot 

 

Positive, Negative, or Little or No Relationship? 

 

The first step is to note the tilt or slope, if any, of a dot cluster. 

A dot cluster that has a slope from the lower left to the upper right, as in panel A of below figure reflects a 

positive relationship. 

 

A dot cluster that has a slope from the upper left to the lower right, as in panel B of below figure reflects a 

negative relationship. 

 

A dot cluster that lacks any apparent slope, as in panel C of below figure reflects little or no relationship. 
 

 

 

Perfect Relationship 

A dot cluster that equals (rather than merely approximates) a straight line reflects a perfect relationship between 

two variables. 

 

Curvilinear Relationship 

The previous discussion assumes that a dot cluster approximates a straight line and, therefore, reflects a linear 

relationship. But this is not always the case. Sometimes a dot cluster approximates a bent or curved line, as in 

below figure, and therefore reflects a curvilinear relationship. 
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A CORRELATION COEFFICIENT FOR QUANTITATIVE DATA : r 
The correlation coefficient, r, is a summary measure that describes the extent of the statistical 

relationship between two interval or ratio level variables. 

 

Properties of r 

 The correlation coefficient is scaled so that it is always between -1 and +1. 

 When r is close to 0 this means that there is little relationship between the variables and the farther away 

from 0 r is, in either the positive or negative direction, the greater the relationship between the two 
variables. 

 The sign of r indicates the type of linear relationship, whether positive or negative. 

 The numerical value of r, without regard to sign, indicates the strength of the linear relationship. 

 A number with a plus sign (or no sign) indicates a positive relationship, and a number with a minus sign 

indicates a negative relationship 

 

COMPUTATION FORMULA FOR r 
Calculate a value for r by using the following computation formula: 

 
 

Where the two sum of squares terms in the denominator are defined as 

 

The sum of the products term in the numerator, SPxy, is defined in below formula 

Or the formula is written as 
 

Where n = Number of Information 

Σx = Total of the First Variable Value 

Σy = Total of the Second Variable Value 

Σxy = Sum of the Product of first & Second Value 

Σx2 = Sum of the Squares of the First Value 

Σy2 = Sum of the Squares of the Second Value 
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REGRESSION 

A regression is a statistical technique that relates a dependent variable to one or more independent 

(explanatory) variables. A regression model is able to show whether changes observed in the dependent variable 

are associated with changes in one or more of the explanatory variables. 

Regression captures the correlation between variables observed in a data set, and quantifies whether 

those correlations are statistically significant or not. 

 

A Regression Line 

a regression line is a line that best describes the behaviour of a set of data. In other words, it’s a line that best 

fits the trend of a given data. 
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The purpose of the line is to describe the interrelation of a 

dependent variable (Y variable) with one or many 

independent variables (X variable). By using the equation 

obtained from the regression line an analyst can forecast 

future behaviours of the dependent variable by inputting 

different values for the independent ones. 

 

Types of regression 

The two basic types of regression are 

 Simple linear regression 

Simple linear regression uses one independent variable to 

explain or predict the outcome of the dependent variable Y 

 Multiple linear regression 

Multiple linear regressions use two or more independent 

variables to predict the outcome 
 

Predictive Errors 

Prediction error refers to the difference between the predicted values made by some model and the 

actual values. 
 

LEAST SQUARES REGRESSION LINE 

The placement of the regression line minimizes not the total predictive error but the total squared 

predictive error, that is, the total for all squared predictive errors. When located in this fashion, the regression 

line is often referred to as the least squares regression line. 

The Least Squares Regression Line is the line that minimizes the sum of the residuals squared. The 

residual is the vertical distance between the observed point and the predicted point, and it is calculated by 

subtracting ˆy from y. 

 

Formula 

 

y’ = bx+a b – slope , a – y intercept 
 

b= N Σ(xy) − Σx Σy 

  N Σ(x2) − (Σx)2 
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b = Σy − m Σx 

   N 

Example 

 
"x" "y" 

2 4 

3 5 

5 7 

7 10 
9 15 

 

Step 1: For each (x,y) calculate x2 and xy: 

x y x2 xy 
 

2 4 4 8 

3 5 9 15 

5 7 25 35 

7 10 49 70 

9 15 81 135 

Step 2: Sum x, y, x2 and xy (gives us Σx, Σy, Σx2 and Σxy): 

Σx: 26 Σy: 41 Σx2: 168 Σxy: 263 

Step 3: Calculate Slope b 

b = N Σ(xy) − Σx Σy 

N Σ(x2) − (Σx)2 

 

= 5 x 263 − 26 x 41 

5 x 168 − 262 

 

= 1315 − 1066 

840 − 676 

 

= 249 

164 

b = 1.5183. 

 

Step 4: Calculate Intercept a 

a = Σy − b Σx 

N 

= 41 − 1.5183 x 26 

5 

a = 0.3049. 

 

Step 5: y’ = bx+a 

y’ = 1.518x + 0.305 
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x y y = 1.518x + 0.305 error 

2 4 3.34 −0.66 

3 5 4.86 −0.14 

5 7 7.89 0.89 

7 10 10.93 0.93 

9 15 13.97 −1.03 
 

To predict the y value we can assume any value for x. 

Assume x = 8. 

Then y = 1.518 x 8 + 0.305 

= 12.45 

 

STANDARD ERROR OF ESTIMATE ,s y | x 

The standard error of the estimate is a measure of the accuracy of predictions. The regression line is the 

line that minimizes the sum of squared deviations of prediction (also called the sum of squares error), and the 

standard error of the estimate is the square root of the average squared deviation. 

The standard error of estimate and symbolized as s y | x, this estimate of predictive error complies with 

the general format for any sample standard deviation, that is, the square root of a sum of squares term divided 

by its degrees of freedom. 
 

 

 
 

Fig. Predictive errors for five friends 

 
 

Example 

Calculate the standard error of estimate for the given X and Y values. X = 1,2,3,4,5 Y=2,4,5,4,5 
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Solution 

Create five columns labeled x, y, y’, y – y’, ( y – y’)2 and N=5 
 

 

x y x2 
xy Y’= 

bx+a 
y-y’ ( y – y’)2 

1 2 1 2 2.8 -0.8 0.64 

2 4 4 8 3.4 0.6 0.36 

3 5 9 15 4.0 1 1 

4 4 16 16 4.6 -0.6 0.36 

5 5 25 25 5.2 -0.2 0.04 

Σx:15 Σy:20 Σx2:55 Σxy:66 
  Σ( y – y’)2 

= 2.4 

Note: for finding b value we have to find xy and x2, so add xy and x2 column in table 

 

b = N Σ(xy) − Σx Σy 

N Σ(x2) − (Σx)2 

 

b=5(66)-15x20 

5(55)-(15)2 

 
= 330 – 300 

275-225 

 

b= 30/50 = 0.6 

 

a = Σy − b Σx 

N 

= 20 – (0.6 x 15) 

5 

= 20 – 11 

5 

a= 9/5 = 2.2 

 

SSy/x = √((y-y’)2 / n-2) 

 

=√(2.4/3) 

 
SSy/x = 0.894 

 

INTERPRETATION OF r 2 

R-Squared (R² or the coefficient of determination) is a statistical measure in a regression model that 

determines the proportion of variance in the dependent variable that can be explained by the independent 

variable. In other words, r-squared shows how well the data fit the regression model (the goodness of fit). 

R-squared can take any values between 0 to 1. Although the statistical measure provides some useful 

insights regarding the regression model, the user should not rely only on the measure in the assessment of a 

statistical model. 
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In addition, it does not indicate the correctness of the regression model. Therefore, the user should 

always draw conclusions about the model by analyzing r-squared together with the other variables in a 

statistical model. 

The most common interpretation of r-squared is how well the regression model explains observed data. 

 

 

MULTIPLE REGRESSION EQUATIONS 

Multiple regression is a statistical technique applied on datasets dedicated to draw out a relationship 

between one response or dependent variable and multiple independent variables. 

Multiple regression works by considering the values of the available multiple independent variables and 

predicting the value of one dependent variable. 

 

Example: 

A researcher decides to study students’ performance from a school over a period of time. He observed that as 

the lectures proceed to operate online, the performance of students started to decline as well. The parameters for 

the dependent variable “decrease in performance” are various independent variables like “lack of attention, 

more internet addiction, neglecting studies” and much more. 
 

Formula to find multiple regression 

y = b1x1 + b2x2 + … bnxn + a 
 

REGRESSION TOWARD THE MEAN 

Regression toward the mean refers to a tendency for scores, particularly extreme scores, to shrink toward the 

mean. 

In statistics, regression toward the mean (also called reversion to the mean, and reversion to mediocrity) is a 

concept that refers to the fact that if one sample of a random variable is extreme, the next sampling of the same 

random variable is likely to be closer to its mean. 

 

Example 

A military commander has two units return, one with 20% casualties and another with 50% casualties. He 

praises the first and berates the second. The next time, the two units return with the opposite results. From this 

experience, he “learns” that praise weakens performance and berating increases performance. 

 

The Regression Fallacy 

The regression fallacy is committed whenever regression toward the mean is interpreted as a real, rather 

than a chance, effect. 

The regression fallacy can be avoided by splitting the subset of extreme observations into two groups 
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UNIT IV 

PYTHON LIBRARIES FOR DATA WRANGLING 

 

Basics of Numpy arrays –aggregations –computations on arrays –comparisons, masks, boolean logic – fancy 

indexing – structured arrays – Data manipulation with Pandas – data indexing and selection – operating on data 

– missing data – Hierarchical indexing – combining datasets – aggregation and grouping – pivot tables 

 

NumPy (short for Numerical Python) provides an efficient interface to store and operate on dense data buffers. 

NumPy arrays are like Python’s built-in list type, but NumPy arrays provide much more efficient storage and 

data operations as the arrays grow larger in size. 

 

We’ll cover a few categories of basic array manipulations here: 

Attributes of arrays 

Determining the size, shape, memory consumption, and data types of arrays 

Indexing of arrays 

Getting and setting the value of individual array elements 

Slicing of arrays 

Getting and setting smaller subarrays within a larger array 

Reshaping of arrays 

Changing the shape of a given array 

Joining and splitting of arrays 

Combining multiple arrays into one, and splitting one array into many 

 

NumPy Array Attributes 

 
 ndim (the number of dimensions),

 shape (the size of each dimension)

 size (the total size of the array)

 

Example 

np.random.seed(0) # seed for reproducibility 

x1 = np.random.randint(10, size=6) # One-dimensional array 

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array 

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array 

print("x3 ndim: ", x3.ndim) 

print("x3 shape:", x3.shape) 

print("x3 size: ", x3.size) 

 

print("dtype:", x3.dtype) 

 

print("itemsize:", x3.itemsize, "bytes") 

print("nbytes:", x3.nbytes, "bytes") 

 

Array Indexing: 
 Accessing Single Elements

 

Accessing Single Elements 

 Indexing in NumPy will feel quite familiar like list indexing,
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 In a one-dimensional array, you can access the ith value (counting from zero) by specifying the desired 

index in square brackets, just as with Python lists

 To index from the end of the array, you can use negative indices

 In a multidimensional array, you access items using a comma-separated tuple of indices

 Unlike Python lists, NumPy arrays have a fixed type. This means, for example, that if you attempt to 

insert a floating-point value to an integer array, the value will be silently truncated.

 

Array Slicing: Accessing Subarrays 
Just as we can use square brackets to access individual array elements, we can also use them to access subarrays 

with the slice notation, marked by the colon (:) character. 

The NumPy slicing syntax follows that of the standard Python list; to access a slice of 

an array x, use this: 

 

x[start:stop:step] 

start – starting array index 

stop – array index to stop ( last value will not be considered) 

step – terms has to be printed from start to stop 

Default to the values start=0, stop=size of dimension, step=1. 

 

Example 

x = np.arange(10) 

x 

 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

x[:5] # prints first five elements 

array([0, 1, 2, 3, 4]) 

 

x[5:] # elements after index 5 

array([5, 6, 7, 8, 9]) 

 

x[4:7] # middle subarray(from 4th index to 6th index) 

array([4, 5, 6]) 

 

While using negative indices the defaults for start and stop are swapped. This becomes a convenient way to 

reverse an array 

x[::-1] # all elements, reversed 
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) 

 

x[5::-2] # reversed every other from index 5 

array([5, 3, 1]) 

Multidimensional sub arrays 

Multidimensional slices work in the same way, with multiple slices separated by commas. 

For example: 

x2 
array([[12, 5, 2, 4], 

[ 7, 6, 8, 8], 
[ 1, 6, 7, 7]]) 
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x2[:2, :3] # two rows, three columns 
array([[12, 5, 2], 

[ 7, 6, 8]]) 
 

x2[:3, ::2] # all rows, every other column(every second column) 
array([[12, 2], 

[ 7, 8], 
[ 1, 7]]) 

Finally, sub array dimensions can even be reversed together 

x2[::-1, ::-1] 
array([[ 7, 7, 6, 1], 

[ 8, 8, 6, 7], 
[ 4, 2, 5, 12]]) 

 

Reshaping of Arrays 
The most flexible way of doing this is with the reshape() method. For example, if you want to put the numbers 

1 through 9 in a 3×3 grid, you can do the following 

grid = np.arange(1, 10).reshape((3, 3)) 
print(grid) 

[[1 2 3] 
[4 5 6] 
[7 8 9]] 

 

Array Concatenation and Splitting 
Concatenation of arrays 

Concatenation, or joining of two arrays in NumPy, is primarily accomplished through the routines 

np.concatenate, np.vstack, and np.hstack. np.concatenate takes a tuple or list of arrays as its first argument. 

x = np.array([1, 2, 3]) 
y = np.array([3, 2, 1]) 
np.concatenate([x, y]) 

 
array([1, 2, 3, 3, 2, 1]) 

 

You can also concatenate more than two arrays at once 

z = [99, 99, 99] 
print(np.concatenate([x, y, z])) 

[ 1 2 3 3 2 1 99 99 99] 

np.concatenate can also be used for two-dimensional arrays 

grid = np.array([[1, 2, 3], 
[4, 5, 6]]) 

np.concatenate([grid, grid]) 
 

array([[1, 2, 3], 
[4, 5, 6], 
[1, 2, 3], 
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[4, 5, 6]]) 
 

Concatenate along the second axis (zero-indexed) 

np.concatenate([grid, grid], axis=1) 
 

array([[1, 2, 3, 1, 2, 3], 
[4, 5, 6, 4, 5, 6]]) 

np.vstack (vertical stack) functions 

x = np.array([1, 2, 3]) 
grid = np.array([[9, 8, 7], 

[6, 5, 4]]) 
np.vstack([x, grid]) 

 
array([[1, 2, 3], 

[9, 8, 7], 
[6, 5, 4]]) 

np.hstack (horizontal stack) functions 

y = np.array([[99], 
[99]]) 

np.hstack([grid, y]) 
 

array([[ 9, 8, 7, 99], 
[ 6, 5, 4, 99]]) 

 

Splitting of arrays 

The opposite of concatenation is splitting, which is implemented by the functions np.split, np.hsplit, and 

np.vsplit. For each of these, we can pass a list of indices giving the split points 

x = [1, 2, 3, 99, 99, 3, 2, 1] 
x1, x2, x3 = np.split(x, [3, 5]) 
print(x1, x2, x3) 

 

[1 2 3] [99 99] [3 2 1] 

Notice that N split points lead to N + 1 subarrays. The related functions np.hsplit and np.vsplit are similar 

grid = np.arange(16).reshape((4, 4)) 
grid 
array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 
[ 8, 9, 10, 11], 
[12, 13, 14, 15]]) 

 

upper, lower = np.vsplit(grid, [2]) 
print(upper) 
print(lower) 
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[[0 1 2 3] 
[4 5 6 7]] 
[[ 8 9 10 11] 
[12 13 14 15]] 

 

left, right = np.hsplit(grid, [2]) 
print(left) 
print(right) 

 
[[ 0 1] 
[ 4 5] 
[ 8 9] 
[12 13]] 
[[ 2 3] 
[ 6 7] 
[10 11] 
[14 15]] 

 

Computation on NumPy Arrays: Universal Functions 
Introducing UFuncs 

NumPy provides a convenient interface into just this kind of statically typed, compiled routine. This is known 

as a vectorized operation. 

 

Vectorized operations in NumPy are implemented via ufuncs, whose main purpose is to quickly execute 

repeated operations on values in NumPy arrays. Ufuncs are extremely flexible—before we saw an operation 

between a scalar and an array, but we can also operate between two arrays 

 

Exploring NumPy’s UFuncs 

 
Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary ufuncs, which operate on 

two inputs. We’ll see examples of both these types of functions here. 

 

Array arithmetic 

NumPy’s ufuncs make use of Python’s native arithmetic operators. The standard addition, subtraction, 

multiplication, and division can all be used. 

 

x = np.arange(4) 
print("x =", x) 
print("x + 5 =", x + 5) 
print("x - 5 =", x - 5) 
print("x * 2 =", x * 2) 

 
Operator Equivalent ufunc Description 

+ np.add Addition (e.g., 1 + 1 = 2) 

- np.subtract Subtraction (e.g., 3 - 2 = 1) 

- np.negative Unary negation (e.g., -2) 

* np.multiply Multiplication (e.g., 2 * 3 = 6) 
/ np.divide Division (e.g., 3 / 2 = 1.5) 
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// np.floor_divide Floor division (e.g., 3 // 2 = 1) 

** np.power Exponentiation (e.g., 2 ** 3 = 8) 
% np.mod Modulus/remainder (e.g., 9 % 4 = 1) 

 

Absolute value 

Just as NumPy understands Python’s built-in arithmetic operators, it also understands Python’s built-in absolute 

value function. 

 np.abs()

 np.absolute()

x = np.array([-2, -1, 0, 1, 2]) 
abs(x) 

 

array([2, 1, 0, 1, 2]) 
 

The corresponding NumPy ufunc is np.absolute, which is also available under the alias np.abs 

np.absolute(x) 
array([2, 1, 0, 1, 2]) 

 

np.abs(x) 
array([2, 1, 0, 1, 2]) 

 
Trigonometric functions 

NumPy provides a large number of useful ufuncs, and some of the most useful for the data scientist are the 

trigonometric functions. 

 np.sin()

 np.cos()

 np.tan()

inverse trigonometric functions 

 np.arcsin()

 np.arccos()

 np.arctan()

 

Defining an array of angles: theta = np.linspace(0, np.pi, 3) 
Compute some trigonometric functions like 

print("theta = ", theta) 
print("sin(theta) = ", np.sin(theta)) 
print("cos(theta) = ", np.cos(theta)) 
print("tan(theta) = ", np.tan(theta)) 

 
Exponents and logarithms 

Another common type of operation available in a NumPy ufunc are the exponentials. 

 np.exp(x) – calculate exponent of all elements in the input array ie ex ( e=2.7182)

 np.exp2(x) – calculate 2**x for all x being the array elements

 np.power(x,y) – calculates the power as xy
 

x = [1, 2, 3] 

print("x =", x) 

print("e^x =", np.exp(x)) 
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print("2^x =", np.exp2(x)) 

print("3^x =", np.power(3, x)) 

 

The inverse of the exponentials, the logarithms, are also available. The basic np.log gives the natural logarithm; 

if you prefer to compute the base-2 logarithm or the base-10 logarithm as . 

 np.log(x) - is a mathematical function that helps user to calculate Natural logarithm of x where x belongs 

to all the input array elements

 np.log2(x) - to calculate Base-2 logarithm of x

 np.log10(x) - to calculate Base-10 logarithm of x

 

x = [1, 2, 4, 10] 

print("x =", x) 

print("ln(x) =", np.log(x)) 

print("log2(x) =", np.log2(x)) 

print("log10(x) =", np.log10(x)) 

 

Specialized ufuncs 

NumPy has many more ufuncs available like 

 Hyperbolic trig functions,

 Bitwise arithmetic,

 Comparison operators,

 Conversions from radians to degrees,

 Rounding and remainders, and much more

 

More specialized and obscure ufuncs is the submodule scipy.special. If you want to compute some obscure 

mathematical function on your data, chances are it is implemented in scipy.special. 

 Gamma function

 

Advanced Ufunc Features 

Specifying output 

Rather than creating a temporary array, you can use this to write computation results directly to the memory 

location where you’d like them to be. For all ufuncs, you can do this using the out argument of the function. 

x = np.arange(5) 

y = np.empty(5) 

np.multiply(x, 10, out=y) 

print(y) 

 

[ 0. 10. 20. 30. 40.] 

 

Aggregates 

To reduce an array with a particular operation, we can use the reduce method of any ufunc. A reduce repeatedly 

applies a given operation to the elements of an array until only a single result remains. 

 

x = np.arange(1, 6) 

np.add.reduce(x) 

 

Similarly, calling reduce on the multiply ufunc results in the product of all array elements 
 

np.multiply.reduce(x) 

120 
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If we’d like to store all the intermediate results of the computation, we can instead use 

Accumulate 

np.add.accumulate(x) 

array([ 1, 3, 6, 10, 15]) 

 

Outer products 

ufunc can compute the output of all pairs of two different inputs using the outer method. This allows you, in one 

line, to do things like create a multiplication table. 

 

x = np.arange(1, 6) 

np.multiply.outer(x, x) 

 

array([[ 1, 2, 3, 4, 5], 

[ 2, 4, 6, 8, 10], 

[ 3, 6, 9, 12, 15], 

[ 4, 8, 12, 16, 20], 

[ 5, 10, 15, 20, 25]]) 

 

Aggregations: Min, Max, and Everything in Between 
Minimum and Maximum 

Python has built-in min and max functions, used to find the minimum value and maximum 

value of any given array. 

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods of 

the array object itself. 

 np.min() – finds the minimum (smallest) value in the array

 np.max() – finds the maximum (largest) value in the array 

Example

x=[1,2,3,4] 

np.min(x) 

1 

np.max(x) 

4 
Multidimensional aggregates 

One common type of aggregation operation is an aggregate along a row or column. 

By default, each NumPy aggregation function will return the aggregate over the entire array. ie. If we use the 

np.sum() it will calculates the sum of all elements of the array. 

 
Example 

m = np.random.random((3, 4)) 

print(M) 

 
[[ 0.8967576 0.03783739 0.75952519 0.06682827] 

[ 0.8354065 0.99196818 0.19544769 0.43447084] 
[ 0.66859307 0.15038721 0.37911423 0.6687194 ]] 
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M.sum() 

6.0850555667307118 

 

Aggregation functions take an additional argument specifying the axis along which the aggregate is computed. 

The axis normally takes either 0 or 1. if the axis = 0 then it runs along with columns, if axis =1 it runs along 

with rows. 

 

Example 

We can find the minimum value within each column by specifying axis=0 

 

M.min(axis=0) 

array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827]) 

 

Similarly, we can find the maximum value within each row 

M.max(axis=1) 

array([ 0.8967576 , 0.99196818, 0.6687194 ]) 

 

Other aggregation functions 

NumPy provides many other aggregation functions most aggregates have a NaN-safe counterpart that 

computes the result while ignoring missing values, which are marked by the special IEEE floating-point NaN 

value. 
Function Name NaN-safe Version Description 

np.sum np.nansum Compute sum of elements 

np.prod np.nanprod Compute product of elements 

np.mean np.nanmean Compute median of elements 

np.std np.nanstd Compute standard deviation 

np.var np.nanvar Compute variance 

np.min np.nanmin Find minimum value 

np.max np.nanmax Find maximum value 

np.argmin np.nanargmin Find index of minimum value 

np.argmax np.nanargmax Find index of maximum value 

np.median np.nanmedian Compute median of elements 

np.percentile np.nanpercentile Compute rank-based statistics of elements 

np.any N/A Evaluate whether any elements are true 
np.all N/A Evaluate whether all elements are true 

 

Computation on Arrays: Broadcasting 
Broadcasting is simply a set of rules for applying binary ufuncs (addition, subtraction, multiplication, 

etc.) on arrays of different sizes. 

For arrays of the same size, binary operations are performed on an element-by-element basis. 

a = np.array([0, 1, 2]) 

b = np.array([5, 5, 5]) 

a + b 

 

array([5, 6, 7]) 

Broadcasting allows these types of binary operations to be performed on arrays of different sizes. 

a + 5 

 

array([5, 6, 7]) 
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We can think of this as an operation that stretches or duplicates the value 5 into the array [5, 5, 5], and adds the 

results. The advantage of NumPy’s broadcasting is that this duplication of values does not actually take place. 

 

We can similarly extend this to arrays of higher dimension. Observe the result when we add a one-dimensional 

array to a two-dimensional array. 

 

Example 

M = np.ones((3, 3)) 

M 

 

array([ [ 1., 1., 1.], 

[ 1., 1., 1.], 

[ 1., 1., 1.]]) 

 

M + a 

 

array([[ 1., 2., 3.], 

[ 1., 2., 3.], 

[ 1., 2., 3.]]) 

Here the one-dimensional array a is stretched, or broadcast, across the second dimension in order to match the 

shape of M. 

 

Just as before we stretched or broadcasted one value to match the shape of the other, here we’ve stretched both 

a and b to match a common shape, and the result is a two dimensional array. 
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The light boxes represent the broadcasted values: again, this extra memory is not actually allocated in the course 

of the operation, but it can be useful conceptually to imagine that it is. 

 

Rules of Broadcasting 

Broadcasting in NumPy follows a strict set of rules to determine the interaction between the two arrays. 

 

• Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions 

is padded with ones on its leading (left) side. 

• Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that 

dimension is stretched to match the other shape. 

• Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised. 

 

Broadcasting example 1 

Let’s look at adding a two-dimensional array to a one-dimensional array: 

 

M = np.ones((2, 3)) 

a = np.arange(3) 

 

Let’s consider an operation on these two arrays. The shapes of the arrays are: 

M.shape = (2, 3) 

a.shape = (3,) 

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with ones: 

M.shape -> (2, 3) 

a.shape -> (1, 3) 

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension to match: 

M.shape -> (2, 3) 

a.shape -> (2, 3) 

The shapes match, and we see that the final shape will be (2, 3): 

M + a 

array([[ 1., 2., 3.], 

[ 1., 2., 3.]]) 

 

Broadcasting example 2 

Let’s take a look at an example where both arrays need to be broadcast: 

a = np.arange(3).reshape((3, 1)) 

b = np.arange(3) 

 

Again, we’ll start by writing out the shape of the arrays: 

a.shape = (3, 1) 

b.shape = (3,) 

 

Rule 1 says we must pad the shape of b with ones: 

a.shape -> (3, 1) 

b.shape -> (1, 3) 

 

And rule 2 tells us that we upgrade each of these ones to match the corresponding size of the other array: 

a.shape -> (3, 3) 

b.shape -> (3, 3) 
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Because the result matches, these shapes are compatible. We can see this here: 

a + b 

array([[0, 1, 2], 

[1, 2, 3], 

[2, 3, 4]]) 

 

Comparisons, Masks, and Boolean Logic 
 

Comparison Operators as ufuncs. 

We saw that using +, -, *, /, and others on arrays leads to element-wise operations. NumPy also implements 

comparison operators such as < (less than) and > (greater than) as element-wise ufuncs. 

The result of these comparison operators is always an array with a Boolean data type. 

All six of the standard comparison operations are available: 

 

x = np.array([1, 2, 3, 4, 5]) 

x < 3 # less than 

array([ True, True, False, False, False], dtype=bool) 

x > 3 # greater than 

array([False, False, False, True, True], dtype=bool) 

 

x <= 3 # less than or equal 

array([ True, True, True, False, False], dtype=bool) 

 

x >= 3 # greater than or equal 

array([False, False, True, True, True], dtype=bool) 

 

x != 3 # not equal 

array([ True, True, False, True, True], dtype=bool) 

 

x == 3 # equal 

array([False, False, True, False, False], dtype=bool) 

 

Operator Equivalent ufunc 

== np.equal 

!= np.not_equal 

< np.less 

<= np.less_equal 

> np.greater 

>= np.greater_equal 

 

Just as in the case of arithmetic ufuncs, these will work on arrays of any size and shape. Here is a two- 

dimensional example 

 

rng = np.random.RandomState(0) 

x = rng.randint(10, size=(3, 4)) 

x 

 

array([[5, 0, 3, 3], 

[7, 9, 3, 5], 

[2, 4, 7, 6]]) 
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x < 6 

 

array([[ True, True, True, True], 

[False, False, True, True], 

[ True, True, False, False]], dtype=bool) 

 

The result is a Boolean array, and NumPy provides a number of straightforward patterns for working with these 

Boolean results. 

 

Working with Boolean Arrays 

 np.count_nonzero()

 np.sum()

 np.sum(x , axis)

 np.any()

 np.all()

 np.all(x , axis)

 

Boolean operators 

Operator  Equivalent ufunc 

& np.bitwise_and 

| np.bitwise_or 

^ np.bitwise_xor 

~ np.bitwise_not 
 

Example 

 

np.sum((inches > 0.5) & (inches < 1)) 

inches > (0.5 & inches) < 1 

np.sum(~( (inches <= 0.5) | (inches >= 1) )) 

Boolean Arrays as Masks 

A more powerful pattern is to use Boolean arrays as masks, to select particular subsets of the data themselves. 

Returning to our x array from before, suppose we want an array of all values in the array that are less than, say, 

5 

We can obtain a Boolean array for this condition easily, as we’ve already seen 

Example 

x 

array([[5, 0, 3, 3], 

[7, 9, 3, 5], 

[2, 4, 7, 6]]) 

 

x < 5 

array([[False, True, True, True], 

[False, False, True, False], 

[ True, True, False, False]], dtype=bool) 

 

Masking operation 

To select these values from the array, we can simply index on this Boolean array; this is known as a masking 

operation. 

x[x < 5] 
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array([0, 3, 3, 3, 2, 4]) 

What is returned is a one-dimensional array filled with all the values that meet this condition; in other words, all 

the values in positions at which the mask array is True. 

 

Fancy Indexing 
Fancy indexing is like the simple indexing we’ve already seen, but we pass arrays of indices in place of 

single scalars. This allows us to very quickly access and modify complicated subsets of an array’s values. 

Exploring Fancy Indexing 

Fancy indexing is conceptually simple: it means passing an array of indices to access multiple array elements at 

once. 

Types of fancy indexing. 

 Indexing / accessing more values

 Array of indices

 In multi dimensional

 Standard indexing

 

Example 

import numpy as np 

rand = np.random.RandomState(42) 

x = rand.randint(100, size=10) 

print(x) 

 

[51 92 14 71 60 20 82 86 74 74] 

 

Indexing / accessing more values 

Suppose we want to access three different elements. We could do it like this: 

[x[3], x[7], x[2]] 

 

[71, 86, 14] 

 

Array of indices 

We can pass a single list or array of indices to obtain the same result. 

ind = [3, 7, 4] 

x[ind] 

 

array([71, 86, 60]) 

 

In multi dimensional 

Fancy indexing also works in multiple dimensions. Consider the following array. 

X = np.arange(12).reshape((3, 4)) 

X 

 

array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 

 

Standard indexing 

Like with standard indexing, the first index refers to the row, and the second to the column. 

row = np.array([0, 1, 2]) 

col = np.array([2, 1, 3]) 
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X[row, col] 

array ([ 2, 5, 11]) 

 
Combined Indexing 
For even more powerful operations, fancy indexing can be combined with the other indexing schemes we’ve 

seen. 

Example array 

print(X) 
[[ 0 1 2 3] 
[ 4 5 6 7] 
[ 8 9 10 11]] 

 Combine fancy and simple indices

X[2, [2, 0, 1]] 
array([10, 8, 9]) 

 

 Combine fancy indexing with slicing

X[1:, [2, 0, 1]] 
 

array([[ 6, 4, 5], 
[10, 8, 9]]) 

 Combine fancy indexing with masking 

mask = np.array([1, 0, 1, 0], dtype=bool) 
X[row[:, np.newaxis], mask]

 
array([[ 0, 2], 

[ 4, 6], 
[ 8, 10]]) 

 

Modifying Values with Fancy Indexing 
Just as fancy indexing can be used to access parts of an array, it can also be used to modify parts of an array. 

Change some value in an array 

 

Modify particular element by index 

For example, imagine we have an array of indices and we’d like to set the corresponding items in an array to 

some value. 

x = np.arange(10) 
i = np.array([2, 1, 8, 4]) 
x[i] = 99 
print(x) 

 
[ 0 99 99 3 99 5 6 7 99 9] 

 
Using assignment operator 

We can use any assignment-type operator for this. For example 

x[i] -= 10 
print(x) 
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[ 0 89 89 3 89 5 6 7 89 9] 
 

Using at() 

Use the at() method of ufuncs for other behavior of modifications. 

x = np.zeros(10) 
np.add.at(x, i, 1) 
print(x) 

 

[ 0. 0. 1. 2. 3. 0. 0. 0. 0. 0.] 
 

 
Sorting in NumPy: np.sort and np.argsort 

Sorting Arrays 

Python has built-in sort and sorted functions to work with lists, we won’t discuss them here because NumPy’s 

np.sort function turns out to be much more efficient and useful for our purposes. By default np.sort uses an O[ N 

log N], quicksort algorithm, though mergesort and heapsort are also available. For most applications, the default 

quicksort is more than sufficient. 

 

Sorting without modifying the input. 

To return a sorted version of the array without modifying the input, you can use np.sort 

x = np.array([2, 1, 4, 3, 5]) 
np.sort(x) 

 
array([1, 2, 3, 4, 5]) 

 

Returns sorted indices 

A related function is argsort, which instead returns the indices of the sorted elements 

x = np.array([2, 1, 4, 3, 5]) 
i = np.argsort(x) 
print(i) 

 

[1 0 3 2 4] 
Sorting along rows or columns 

A useful feature of NumPy’s sorting algorithms is the ability to sort along specific rows or columns of a 

multidimensional array using the axis argument. For example 

 

rand = np.random.RandomState(42) 
X = rand.randint(0, 10, (4, 6)) 
print(X) 

 
[[6 3 7 4 6 9] 
[2 6 7 4 3 7] 
[7 2 5 4 1 7] 
[5 1 4 0 9 5]] 

 

np.sort(X, axis=0) 

array([[2, 1, 4, 0, 1, 5], 
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[5, 2, 5, 4, 3, 7], 
[6, 3, 7, 4, 6, 7], 
[7, 6, 7, 4, 9, 9]]) 

np.sort(X, axis=1) 

array([[3, 4, 6, 6, 7, 9], 
[2, 3, 4, 6, 7, 7], 
[1, 2, 4, 5, 7, 7], 
[0, 1, 4, 5, 5, 9]]) 

 
 
 

Partial Sorts: Partitioning 

Sometimes we’re not interested in sorting the entire array, but simply want to find the K smallest values in the 

array. NumPy provides this in the np.partition function. np.partition takes an array and a number K; the result is 

a new array with the smallest K values to the left of the partition, and the remaining values to the right, in 

arbitrary order 

x = np.array([7, 2, 3, 1, 6, 5, 4]) 
np.partition(x, 3) 

 
array([2, 1, 3, 4, 6, 5, 7]) 

Note that the first three values in the resulting array are the three smallest in the array, and the remaining array 

positions contain the remaining values. Within the two partitions, the elements have arbitrary order. 

 

Partitioning in multidimensional array 

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional array. 

np.partition(X, 2, axis=1) 
 

array([[3, 4, 6, 7, 6, 9], 
[2, 3, 4, 7, 6, 7], 
[1, 2, 4, 5, 7, 7], 
[0, 1, 4, 5, 9, 5]]) 

 

Structured Arrays 
This section demonstrates the use of NumPy’s structured arrays and record arrays, which provide efficient 

storage for compound, heterogeneous data. 

NumPy data types 

Character Description Example 

'b' Byte np.dtype('b') 

'i' Signed integer np.dtype('i4') == np.int32 

'u' Unsigned integer np.dtype('u1') == np.uint8 

'f' Floating point np.dtype('f8') == np.int64 

'c' Complex floating point np.dtype('c16') == np.complex128 

'S', 'a' string np.dtype('S5') 

'U' Unicode string np.dtype('U') == np.str_ 

'V' Raw data (void) np.dtype('V') == np.void 
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Consider if we have several categories of data on a number of people (say, name, age, and weight), and we’d 

like to store these values for use in a Python program. It would be possible to store these in three separate 

arrays. 

name = ['Alice', 'Bob', 'Cathy', 'Doug'] 
age = [25, 45, 37, 19] 
weight = [55.0, 85.5, 68.0, 61.5] 

 

Creating structured array 

NumPy can handle this through structured arrays, which are arrays with compound data types. create a 

structured array using a compound data type specification as follows. 

data = np.zeros(4, dtype={'names':('name', 'age', 'weight'), 
'formats':('U10', 'i4', 'f8')}) 

print(data.dtype) 
[('name', '<U10'), ('age', '<i4'), ('weight', '<f8')] 
U10 - Unicode string of maximum length 10 

i4 - 4-byte (i.e., 32 bit) integer 

f8 - 8-byte (i.e., 64 bit) float 

 

Now we can fill the array with our lists of values 

data['name'] = name 
data['age'] = age 
data['weight'] = weight 
print(data) 

 
[('Alice', 25, 55.0) ('Bob', 45, 85.5) ('Cathy', 37, 68.0)('Doug', 19, 61.5)] 

 
Refer values through index or name 

The handy thing with structured arrays is that you can now refer to values either by index or by name. 

i. data['name']# by name 
 

array(['Alice', 'Bob', 'Cathy', 'Doug'],dtype='<U10') 
ii. data[0]# by index 

 

('Alice', 25, 55.0) 
 

Using Boolean masking 

This allows to do some more sophisticated operations such as filtering on any fields. 

data[data['age'] < 30]['name'] 
 

array(['Alice', 'Doug'],dtype='<U10') 

Creating Structured Arrays 

Dictionary method 

np.dtype({'names':('name', 'age', 'weight'), 
'formats':('U10', 'i4', 'f8')}) 

dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]) 
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Numerical types can be specified with Python types 

np.dtype({'names':('name', 'age', 'weight'), 
'formats':((np.str_, 10), int, np.float32)}) 

dtype([('name', '<U10'), ('age', '<i8'), ('weight', '<f4')]) 

List of tuples 

np.dtype([('name', 'S10'), ('age', 'i4'), ('weight', 'f8')]) 
 

dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')]) 
Specify the types alone 

np.dtype('S10,i4,f8') 
 

dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')]) 
 

 

Data Manipulation with Pandas 
Pandas is a newer package built on top of NumPy, and provides an efficient implementation of a 

DataFrame. DataFrames are essentially multidimensional arrays with attached row and column labels, and often 

with heterogeneous types and/or missing data. 

Pandas, and in particular its Series and DataFrame objects, builds on the NumPy array structure and 

provides efficient access to these sorts of “data munging” tasks that occupy much of a data scientist’s time. 

Here we will focus on the mechanics of using Series, DataFrame, and related structures effectively. 

 

Introducing Pandas Objects 
Pandas objects can be thought of as enhanced versions of NumPy structured arrays in which the rows and 

columns are identified with labels rather than simple integer indices. 

Pandas provide a host of useful tools, methods, and functionality on top of the basic data structures. 

Three fundamental Pandas data structures: the Series, DataFrame, and Index 

 

The Pandas Series Object 
A Pandas Series is a one-dimensional array of indexed data. It can be created from a list or array as follows: 

data = pd.Series([0.25, 0.5, 0.75, 1.0]) 
data 

 

0 0.25 
1 0.50 
2 0.75 
3 1.00 

dtype: float64 
 Finding values 

The values are simply a familiar NumPy array 

data.values 
 

array([ 0.25, 0.5 , 0.75, 1. ]) 

 Finding index 

The index is an array-like object of type pd.Index 

data.index 
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RangeIndex(start=0, stop=4, step=1) 
 Access by index 

Like with a NumPy array, data can be accessed by the associated index via the familiar 

Python square-bracket notation 

data[1] 

0.5 

data[1:3] 
 

1 0.50 
2 0.75 

dtype: float64 

Series as generalized NumPy array 
the NumPy array has an implicitly defined integer index used to access the values, the Pandas Series has an 

explicitly defined index associated with the values. 

This explicit index definition gives the Series object additional capabilities. For example, the index need not be 

an integer, but can consist of values of any desired type. 

For example, if we wish, we can use strings as an index. 

 

Strings as an index 

data = pd.Series([0.25, 0.5, 0.75, 1.0], 
index=['a', 'b', 'c', 'd']) 
data 

 
a 0.25 
b 0.50 
c 0.75 
d 1.00 
dtype: float64 

Noncontiguous or non sequential indices. 

data = pd.Series([0.25, 0.5, 0.75, 1.0], 
index=[2, 5, 3, 7]) 
data 

 

2 0.25 
5 0.50 
3 0.75 
7 1.00 
dtype: float64 

 

Series as specialized dictionary 
A dictionary is a structure that maps arbitrary keys to a set of arbitrary values, and a Series is a structure that 

maps typed keys to a set of typed values. 

just as the type-specific compiled code behind a NumPy array makes it more efficient than a Python list for 

certain operations, the type information of a Pandas Series makes it much more efficient than Python 

dictionaries for certain operations. 
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We can make the Series-as-dictionary analogy even more clear by constructing a Series object directly from a 

Python dictionary. 

For example 

 

sub1={‘sai’:90,’ram’:85,’kasim’:92,’tamil’:89} 
mark=pd.Series(sub1) 
mark 

 
sai 90 

ram 85 

kasim 92 

tamil 89 

dtype: int64 

 

Dictionary-style item access 

Mark[‘ram’] 
85 

 

Array-style slicing 

Mark[ ‘sai’:’kasim’] 
sai 90 

ram 85 

kasim 92 

 

Constructing Series objects 
 List or NumPy array 

pd.Series([2, 4, 6]) 
 

0 2 
1 4 
2 6 
dtype: int64 

 Repeated to fill the specified index 

pd.Series(5, index=[100, 200, 300]) 
 

100 5 
200 5 
300 5 
dtype: int64 

 

 Data can be a dictionary, in which index defaults to the sorted dictionary keys 

pd.Series({2:'a', 1:'b', 3:'c'}) 
 

1 b 
2 a 

3 c 
dtype: object 

 

 The index can be explicitly set if a different result is preferred 
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pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2]) 
 

3 c 
2 a 
dtype: object 

 

The Pandas DataFrame Object 
The fundamental structure in Pandas is the DataFrame. The DataFrame can be thought of either as a 

generalization of a NumPy array, or as a specialization of a Python dictionary. 

DataFrame as a generalized NumPy array 

A DataFrame is an analog of a two-dimensional array with both flexible row indices and flexible column 

names. Just as you might think of a two-dimensional array as an ordered sequence of aligned one-dimensional 

columns, you can think of a DataFrame as a sequence of aligned Series objects. Here, by “aligned” we mean 

that they share the same index. 

To demonstrate this, let’s first construct a new Series listing the marks of subject2. 

 

sub2={'sai':91,'ram':95,'kasim':89,'tamil':90} 
 

We can use a dictionary to construct a single two-dimensional object containing this information. 

result=pd.DataFrame({'DS':sub1,'FDS':sub2}) 
result 

 
 DS FDS 
sai  90 91 
ram  85 95 
kasim 92 89  

tamil 89 90  

 
DataFrame has an index attribute 

Like the Series object, the DataFrame has an index attribute that gives access to the index labels 

result.index 
 

Index(['sai', 'ram', 'kasim', 'tamil'], dtype='object') 

 

DataFrame has a columns attribute. 

The DataFrame has a columns attribute, which is an Index object holding the column labels. 

result.columns 
 

Index(['DS', 'FDS'], dtype='object') 

 

DataFrame as specialized dictionary 

We can also think of a DataFrame as a specialization of a dictionary. Where a dictionary maps a key to a value, 

a DataFrame maps a column name to a Series of column data. 

result['DS'] 
 

sai 90 

ram 85 

kasim 92 
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Note 

tamil 89 

Name: DS, dtype: int64 



 

 

In a two-dimensional NumPy array, data[0] will return the first row. For a DataFrame, data['col0'] will return 

the first column. Because of this, it is probably better to think about DataFrames as generalized dictionaries 

rather than generalized arrays, though both ways of looking at the situation can be useful. 

 
 

Constructing DataFrame objects 
A Pandas DataFrame can be constructed in a variety of ways. Here we’ll give several examples. 

 From a single Series object. 

 From a list of dicts. 

 From a dictionary of Series objects. 

 From a two-dimensional NumPy array. 

 From a NumPy structured array. 

 

From a single Series object. 

A DataFrame is a collection of Series objects, and a single column DataFrame can be constructed from a single 

Series. 

sub1=pd.Series({'sai':90,'ram':85,'kasim':92,'tamil':89}) 
pd.DataFrame(sub1,columns=['DS']) 

 
 DS 

sai 90 

ram 85 

kasim 92 

tamil 89 

 

From a list of dicts. 

Any list of dictionaries can be made into a DataFrame. We’ll use a simple list comprehension to create some 

data 

data = [{'a': i, 'b': 2 * i} 
for i in range(3)] 
pd.DataFrame(data) 

 

a b 
0 0 0 
1 1 2 
2 2 4 
Even if some keys in the dictionary are missing, Pandas will fill 

them in with NaN (i.e.,“not a number”) values. 

pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}]) 

a b c 

0 1.0 2 NaN 
1 NaN 3 4.0 

 

From a dictionary of Series objects. 
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As we saw before, a DataFrame can be constructed from a dictionary of Series objects as well. 

pd.DataFrame({'DS':sub1,'FDS':sub2}) 

 
   



 
 

DS 
 
FDS 

sai  90 91 
ram  85 95 
kasim 92 89  

tamil 89 90  

 
From a two-dimensional NumPy array. 

Given a two-dimensional array of data, we can create a DataFrame with any specified column and index names. 

If omitted, an integer index will be used for each. 

pd.DataFrame(np.random.rand(3, 2), 
columns=['food', 'water'], 
index=['a', 'b', 'c']) 

 
food water 

a 0.865257 0.213169 
b 0.442759 0.108267 
c 0.047110 0.905718 

 

From a NumPy structured array. 

A Pandas DataFrame operates much like a structured array, and can be created directly. 

A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')]) 
A 

 
array([(0, 0.0), (0, 0.0), (0, 0.0)], 
dtype=[('A', '<i8'), ('B', '<f8')]) 

pd.DataFrame(A) 

A B 

0 0 0.0 
1 0 0.0 
2 0 0.0 

 

The Pandas Index Object 
We have seen here that both the Series and DataFrame objects contain an explicit index that lets you reference 

and modify data. This Index object is an interesting structure in itself, and it can be thought of either as an 

immutable array or as an ordered set. 

ind = pd.Index([2, 3, 5, 7, 11]) 
ind 

 
Int64Index([2, 3, 5, 7, 11], dtype='int64') 

 

 Index as immutable array 

The Index object in many ways operates like an array. For example, we can use standard 

Python indexing notation to retrieve values or slices. 
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ind[1] 
3 
ind[::2] 
Int64Index([2, 5, 11], dtype='int64') 

 

 Index as ordered set 

Pandas objects are designed to facilitate operations such as joins across datasets, which depend on many 

aspects of set arithmetic. 

The Index object follows many of the conventions used by Python’s built-in set data structure, so that 

unions, intersections, differences, and other combinations can be computed in a familiar way. 

 

indA = pd.Index([1, 3, 5, 7, 9]) 
indB = pd.Index([2, 3, 5, 7, 11]) 
indA & indB # intersection 

Int64Index([3, 5, 7], dtype='int64') 

indA | indB # union 

Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64') 
 

indA ^ indB # symmetric difference 
Int64Index([1, 2, 9, 11], dtype='int64') 

 
 

 

 
Data Selection in Series 

Data Indexing and Selection 

A Series object acts in many ways like a one dimensional NumPy array, and in many ways like a standard 

Python dictionary. It will help us to understand the patterns of data indexing and selection in these arrays. 

 Series as dictionary 

 Series as one-dimensional array 

 Indexers: loc, iloc, and ix 

 

 Series as dictionary 

Like a dictionary, the Series object provides a mapping from a collection of keys to a collection of 

values. 

data = pd.Series([0.25, 0.5, 0.75, 1.0], 
index=['a', 'b', 'c', 'd']) 
data 

 
a 0.25 
b 0.50 
c 0.75 
d 1.00 
dtype: float64 

 

data['b'] 
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0.5 
Examine the keys/indices and values 

We can also use dictionary-like Python expressions and methods to examine the keys/indices and values 

i. 'a' in data 
True 

ii. data.keys() 
Index(['a', 'b', 'c', 'd'], dtype='object') 

 

iii. list(data.items()) 
[('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)] 

 
Modifying series object 

Series objects can even be modified with a dictionary-like syntax. Just as you can extend a dictionary by 

assigning to a new key, you can extend a Series by assigning to a new index value. 

 

data['e'] = 1.25 
data 

 
a 0.25 
b 0.50 
c 0.75 
d 1.00 
e 1.25 
dtype: float64 

 

 Series as one-dimensional array 

A Series builds on this dictionary-like interface and provides array-style item selection via the same basic 

mechanisms as NumPy arrays—that is, slices, masking, and fancy indexing. 

 

Slicing by explicit index 

data['a':'c'] 
 

a 0.25 
b 0.50 
c 0.75 
dtype: float64 

 

Slicing by implicit integer index 

data[0:2] 
 

a 0.25 
b 0.50 
dtype: float64 

 

Masking 
data[(data > 0.3) & (data < 0.8)] 

 

b 0.50 
c 0.75 
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dtype: float64 
 

Fancy indexing 

data[['a', 'e']] 
 

a 0.25 
e 1.25 
dtype: float64 

 

 Indexers: loc, iloc, and ix 

Pandas provides some special indexer attributes that explicitly expose certain indexing schemes. These are 

not functional methods, but attributes that expose a particular slicing interface to the data in the Series. 

data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5]) 
data 

 
1 a 
3 b 
5 c 
dtype: object 

 

loc - the loc attribute allows indexing and slicing that always references the explicit index. 

data.loc[1] 
'a' 

 
data.loc[1:3] 
1 a 
3 b 
dtype: object 

iloc - The iloc attribute allows indexing and slicing that always references the implicit Python-style index. 

data.iloc[1] 
'b' 

 
data.iloc[1:3] 
3 b 
5 c 
dtype: object 

 
ix- ix is a hybrid of the two, and for Series objects is equivalent to standard [ ]-based indexing. 

 

Data Selection in DataFrame 
 DataFrame as a dictionary 

 DataFrame as two-dimensional array 

 Additional indexing conventions 

 

DataFrame as a dictionary 

The first analogy we will consider is the DataFrame as a dictionary of related Series objects. 
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The individual Series that make up the columns of the DataFrame can be accessed via dictionary-style indexing 

of the column name. 

 

Dictionary-style indexing of the column name. 

result=pd.DataFrame({'DS':sub1,'FDS':sub2}) 
result[‘DS’] 

 
 DS 

sai 90 

ram 85 

kasim 92 

tamil 89 

 
Attribute-style access with column names that are strings 

result.DS 
 

 DS 

sai 90 

ram 85 

kasim 92 

tamil 89 

 

Comparing attribute style and dictionary style accesses 

result.DS is result[‘DS’] 
 

True 
Modify the object 
Like with the Series objects this dictionary-style syntax can also be used to modify the object, in this case to add 

a new column: 

 

result[‘TOTAL’]=result[‘DS’]+result[‘FDS’] 
result 

 
 DS FDS TOTAL 
sai  90 91 181 
ram  85 95 180 
kasim 92 89 181  

tamil 89 90 179  

 
 

DataFrame as two-dimensional array 

 Transpose 

We can transpose the full DataFrame to swap rows and columns. 

result.T 

 
 

DS 
sai 
90 

ram 
85 

kasim 
92 

tamil 
89 

 

FDS 91 95 89 90  

TOTAL 181 180 181 179   
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Pandas again uses the loc, iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can index the 

underlying array as if it is a simple NumPy array (using the implicit Python-style index), but the DataFrame 

index and column labels are maintained in the result 

 loc 

result.loc[: ‘ram’, : ‘FDS’ ] 

 
 DS FDS 
sai 90 91 
ram 85 95 

 iloc 

result.iloc[:2, :2 ] 

 
 DS FDS 
sai 90 91 
ram 85 95 

 

 ix 

result.ix[:2, :’FDS’ ] 

 
 DS FDS 
sai 90 91 
ram 85 95 

 

 Masking and Fancy indexing 

In the loc indexer we can combine masking and fancy indexing as in the following: 

result.loc[result.total>180,[ ‘DS’, ‘FDS’ ]] 

 
 DS FDS 
sai 90 91 
kasim 92 89  

 

 Modifying values 

Indexing conventions may also be used to set or modify values; this is done in the standard way that 

you might be accustomed to from working with NumPy. 

 

result.iloc[1,1] =70 
 DS FDS TOTAL 
sai  90 91 181 
ram  85 70 180 
kasim 92 89 181  

tamil 89 90 179  

 
Additional indexing conventions 

Slicing row wise 

 

result['sai':'kasim'] 
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 DS FDS TOTAL 
sai  90 91 181 
ram  85 70 180 
kasim 92 89 181  

 

Such slices can also refer to rows by number rather than by index: 

result[1:3] 

 
 DS FDS TOTAL 
ram 85 70 180 
kasim 92 89 181  

 

Masking row wise 

result[result.total>180] 

 
 DS FDS TOTAL 
sai 90 91 181 
kasim 92 89 181  

 
 

Operating on Data in Pandas 
Pandas inherits much of this functionality from NumPy, and the ufuncs.   So Pandas having the ability to 

perform quick element-wise operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) 

and with more sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.). 

For unary operations like negation and trigonometric functions, these ufuncs will preserve index and column 

labels in the output. 

For binary operations such as addition and multiplication, Pandas will automatically align indices when passing 

the objects to the ufunc. 

Here we are going to see how the universal functions are working in series and DataFrames by 

 Index preservation 

 Index alignment 

 

Index Preservation 
Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas Series and DataFrame objects. 

We can use all arithmetic and special universal functions as in NumPy on pandas. In outputs the index will 

preserved (maintained) as shown below. 

For series 

x=pd.Series([1,2,3,4]) 
x 

 

0 1 

1 2 

2 3 

3 4 

dtype: int64 

 

For DataFrame 

df=pd.DataFrame(np.random.randint(0,10,(3,4)), 
columns=['a','b','c','d']) 
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df  

 

a 

 
 

b 

 
 

c 

 
 

d 

0 1 4 1 4 

1 8 4 0 4 

2 7 7 7 2 
 

For universal function. (here we use exponent as example) 

Ufuncs for series 

np.exp(ser) 
 

0 8103.083928 

1 54.598150 

2 403.428793 

3 20.085537 

dtype: float64 

 

Ufuncs for Data Frame 

np.exp(df) 
 
 
 

 a b c d 

 
0 

 
2.718282 

 
54.598150 

 
2.718282 

 
54.598150 

 
1 

 
2980.957987 

 
54.598150 

 
1.000000 

 
54.598150 

 
2 

 
1096.633158 

 
1096.633158 

 
1096.633158 

 
7.389056 

 

Index Alignment 
Pandas will align indices in the process of performing the operation. This is very convenient when you are 

working with incomplete data, as we’ll. 

 

Index alignment in Series 

suppose we are combining two different data sources, then the index will aligned accordingly. 

x=pd.Series([2,4,6],index=[1,3,5]) 
y=pd.Series([1,3,5,7],index=[1,2,3,4]) 
x+y 

 

1 3.0 

2 NaN 

3 9.0 

4 NaN 
5 NaN 
dtype: float64 
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The resulting array contains the union of indices of the two input arrays, which we could determine using 

standard Python set arithmetic on these indices. 

Any item for which one or the other does not have an entry is marked with NaN, or “Not a Number,” which is 

how Pandas marks as missing data. 

 

Fill value in missing data (fill_value) 

If using NaN values is not the desired behavior, we can modify the fill value using appropriate object methods 

in place of the operators. 

 

x.add(y,fill_value=0) 
 

1 3.0 

2 3.0 

3 9.0 

4 7.0 

5 6.0 

dtype: float64 

 

Index alignment in DataFrame 

A similar type of alignment takes place for both columns and indices when you are performing operations on 

DataFrames. 

 

A = pd.DataFrame(rng.randint(0, 20, (2, 2)),columns=list('AB')) 
A 

 
A B 

0 1 11 
1 5 1 

 

B = pd.DataFrame(rng.randint(0, 10, (3, 3)), 
columns=list('BAC')) 
B 

 

B A C 
0 4 0 9 
1 5 8 0 
2 9 2 6 

 
A + B 

 

A B C 
0 1.0 15.0 NaN 
1 13.0 6.0   NaN 
2 NaN NaN NaN 

 
Notice that indices are aligned correctly irrespective of their order in the two objects, and indices in the result 

are sorted. As was the case with Series, we can use the associated object’s arithmetic method and pass any 

desired fill_value to be used in place of missing entries. Here we’ll fill with the mean of all values in A. 

 

32 



 
 

fill = A.stack().mean() 
A.add(B, fill_value=fill) 

 

A   B C 
0 1.0 15.0 13.5 
1 13.0 6.0 4.5 
2 6.5 13.5 10.5 

 
Mapping between Python operators and Pandas methods. 

Python operator Pandas method(s) 

+ add() 

- sub(), subtract() 

* mul(), multiply() 

/ truediv(), div(), divide() 

// floordiv() 

% mod() 

** pow() 

 

Operations between Data Frame and Series 
When you are performing operations between a DataFrame and a Series, the index and column alignment is 

similarly maintained. Operations between a DataFrame and a Series are similar to operations between a two- 

dimensional and one-dimensional NumPy array. 

A = rng.randint(10, size=(3, 4)) 
A 
array([[3, 8, 2, 4], 
[2, 6, 4, 8], 
[6, 1, 3, 8]]) 

 

A - A[0] 
array([[ 0, 0, 0, 0], 
[-1, -2, 2, 4], 
[ 3, -7, 1, 4]]) 

 
 

Handling Missing Data 
A number of schemes have been developed to indicate the presence of missing data in a table or DataFrame. 

Generally, they revolve around one of two strategies: using a mask that globally indicates missing values, or 

choosing a sentinel value that indicates a missing entry. 

In the masking approach, the mask might be an entirely separate Boolean array, or it may involve appropriation 

of one bit in the data representation to locally indicate the null status of a value. 

 

In the sentinel approach, the sentinel value could be some data-specific convention, such as indicating a missing 

integer value with –9999 or some rare bit pattern, or it could be a more global convention, such as indicating a 

missing floating-point value with NaN (Not a Number), a special value which is part of the IEEE floating-point 

specification. 

 

Missing Data in Pandas 
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The way in which Pandas handles missing values is constrained by its NumPy package, which does not have a 

built-in notion of NA values for non floating- point data types. 

 

NumPy supports fourteen basic integer types once you account for available precisions, signedness, and 

endianness of the encoding. Reserving a specific bit pattern in all available NumPy types would lead to an 

unwieldy amount of overhead in special-casing various operations for various types, likely even requiring a new 

fork of the NumPy package. 

 

Pandas chose to use sentinels for missing data, and further chose to use two already-existing Python null values: 

the special floatingpoint NaN value, and the Python None object. This choice has some side effects, as we will 

see, but in practice ends up being a good compromise in most cases of interest. 

 

None: Pythonic missing data 
The first sentinel value used by Pandas is None, a Python singleton object that is often used for missing data in 

Python code. Because None is a Python object, it cannot be used in any arbitrary NumPy/Pandas array, but only 

in arrays with data type 'object' (i.e., arrays of Python objects) 

 

This dtype=object means that the best common type representation NumPy could infer for the contents of the 

array is that they are Python objects. 

 

NaN: Missing numerical data 
NaN is a special floating-point value recognized by all systems that use the standard IEEE floating-point 

representation. 

vals2 = np.array([1, np.nan, 3, 4]) 
vals2.dtype 

 

dtype('float64') 
You should be aware that NaN is a bit like a data virus—it infects any other object it touches. Regardless of the 

operation, the result of arithmetic with NaN will be another NaN 

1 + np.nan 

nan 

0 * np.nan 
 

Nan 
 

NaN and None in Pandas 
NaN and None both have their place, and Pandas is built to handle the two of them nearly interchangeably. 

pd.Series([1, np.nan, 2, None]) 
0 1.0 
1 NaN 
2 2.0 
3 NaN 
dtype: float64 

For types that don’t have an available sentinel value, Pandas automatically type-casts when NA values are 

present. For example, if we set a value in an integer array to np.nan, it will automatically be upcast to a floating- 

point type to accommodate the NA 
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x = pd.Series(range(2), dtype=int) 
x 

0 0 
1 1 
dtype: int64 
x[0] = None 
x 
0 NaN 
1 1.0 
dtype: float64 

Notice that in addition to casting the integer array to floating point, Pandas automatically converts the None to a 

NaN value. 

 

Pandas handling of NAs by type 
Typeclass Conversion when storing NAs NA sentinel value 

floating No change np.nan 

object No change None or np.nan 

integer Cast to float64 np.nan 
boolean Cast to object None or np.nan 

 

Note : In Pandas, string data is always stored with an object dtype. 

 

Operating on Null Values 
there are several useful methods for detecting, removing, and replacing null values in Pandas data structures. 

They are: 

 isnull() - Generate a Boolean mask indicating missing values 

 notnull() - Opposite of isnull() 

 dropna() - Return a filtered version of the data 

 fillna() - Return a copy of the data with missing values filled or imputed 

 

Detecting null values 

Pandas data structures have two useful methods for detecting null data: isnull() and notnull(). 

isnull() 

data = pd.Series([1, np.nan, 'hello', None]) 
data.isnull() 

 

0 False 
1 True 
2 False 
3 True 
dtype: bool 

 

notnull() 

data.notnull() 
 

0 True 
1 False 
2 True 
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3 False 
dtype: bool 

 

Dropping null values 

 

dropna() 

data.dropna() 
 

0 1 
2 hello 
dtype: object 

 
Dropping null values in dataframe 

 

df = pd.DataFrame([[1, np.nan, 2], 
[2, 3, 5], 
[np.nan, 4, 6]]) 
Df 

 

0 1 2 
0 1.0 NaN 2 
1 2.0 3.0 5 
2 NaN 4.0 6 

df.dropna() 

0 1 2 

1 2.0 3.0 5 
 

Drop values in column or row 

We can drop NA values along a different axis; axis=1 drops all columns containing a null value. 

df.dropna(axis='columns') 

0 2 

1 5 
2 6 

Rows or columns having all null values 

You can also specify how='all', which will only drop rows/columns that are all null values. 

 

df[3] = np.nan 
df 

 

0 1 2 3 

0 1.0 NaN 2 NaN 
1 2.0 3.0 5 NaN 
2 NaN 4.0 6 NaN 
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df.dropna(axis='columns', how='all') 
 

0 1 2 
0 1.0 NaN 2 
1 2.0 3.0 5 
2 NaN 4.0 6 

 
Specific no of null values (thresh) 

the thresh parameter lets you specify a minimum number of non-null values for the row/column to be kept 

df.dropna(axis='rows', thresh=3) 
 

0 1 2 3 
1 2.0 3.0 5 NaN 

 
Filling null values 

Sometimes rather than dropping NA values, you’d rather replace them with a valid value. This value might be a 

single number like zero, or it might be some sort of imputation or interpolation from the good values. You could 

do this in-place using the isnull() method as a mask, but because it is such a common operation Pandas provides 

the fillna() method, which returns a copy of the array with the null values replaced. 

data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde')) 
data 

 

a 1.0 
b NaN 
c 2.0 
d NaN 

Fill with single value 

We can fill NA entries with a single value, such as zero 

data.fillna(0) 
 

a 1.0 
b 0.0 
c 2.0 
d 0.0 
e 3.0 
dtype: float64 

 

Fill with previous value 

We can specify a forward-fill to propagate the previous value forward 

data.fillna(method='ffill') 
 

a 1.0 
b 1.0 
c 2.0 
d 2.0 
e 3.0 
dtype: float64 



 
 
 

Fill with next value 

We can specify a back-fill to propagate the next values backward. 

data.fillna(method='bfill') 
 

a 1.0 
b 2.0 
c 2.0 
d 3.0 
e 3.0 
dtype: float64 

 

Hierarchical Indexing 
Up to this point we’ve been focused primarily on one-dimensional and twodimensional data, stored in Pandas 

Series and DataFrame objects, respectively. Often it is useful to go beyond this and store higher-dimensional 

data—that is, data indexed by more than one or two keys. 

Pandas does provide Panel and Panel4D objects that natively handle three-dimensional and four-dimensional, 

a far more common pattern in practice is to make use of hierarchical indexing (also known as multi-indexing) 

to incorporate multiple index levels within a single index. 

In this way, higher-dimensional data can be compactly represented within the familiar one-dimensional Series 

and two-dimensional DataFrame objects. 

 

Here we’ll explore the direct creation of MultiIndex objects; considerations around indexing, slicing, and 

computing statistics across multiply indexed data; and useful routines for converting between simple and 

hierarchically indexed representations of your data. 

 

A Multiply Indexed Series 
Pandas MultiIndex 

Pandas provides a better way. Our tuple-based indexing is essentially a rudimentary multi-index, and the Pandas 

MultiIndex type gives us the type of operations we wish to have. We can create a multi-index from the tuples as 

follows 

 

index = [('California', 2000), ('California', 2010), 
('New York', 2000), ('New York', 2010), 
('Texas', 2000), ('Texas', 2010)] 
populations = [33871648, 37253956, 
18976457, 19378102, 
20851820, 25145561] 
pop = pd.Series(populations, index=index) 
pop 

 

(California, 2000) 33871648 
(California, 2010) 37253956 
(New York, 2000) 18976457 
(New York, 2010) 19378102 
(Texas, 2000) 20851820 
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#creating multi index 
index = pd.MultiIndex.from_tuples(index) 
index 

 

MultiIndex(levels=[['California','New York','Texas'],[2000, 2010]], 
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) 

 

Hierarchical representation of the data 

pop = pop.reindex(index) 
pop 

 
California 2000 33871648 

2010 37253956 
New York 2000 18976457 

2010 19378102 
Texas 2000 20851820 

2010 25145561 
dtype: int64 

Here the first two columns of the Series representation show the multiple index values, while the third column 

shows the data. 

 

Access all data with second index 

pop[:, 2010] 
 

California 37253956 
New York 19378102 
Texas 25145561 
dtype: int64 

MultiIndex as extra dimension 

we could easily have stored the same data using a simple DataFrame with index and column labels. The 

unstack() method will quickly convert a multiplyindexed Series into a conventionally indexed DataFrame. 

 

pop_df = pop.unstack() 
pop_df 

 

2000 2010 
California 33871648 37253956 
New York 18976457 19378102 
Texas 20851820 25145561 

 
The stack() method provides the opposite operation. 

pop_df.stack() 
 

California 2000 33871648 
2010 37253956 
New York 2000 18976457 
2010 19378102 
Texas 2000 20851820 
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2010 25145561 
dtype: int64 

 

Add a new column in multi dimensional data frame. 

pop_df = pd.DataFrame({'total': pop, 
'under18': [9267089, 9284094, 

4687374, 4318033, 
5906301, 6879014]}) 

pop_df 
 

total under18 

California 2000 33871648 9267089 
 2010 37253956 9284094 
New York 2000 18976457 4687374 
 2010 19378102 4318033 
Texas 2000 20851820 5906301 

2010 25145561 6879014 
 

Universal functions 

All the ufuncs and other functionality work with hierarchical indices. 

f_u18 = pop_df['under18'] / pop_df['total'] 
f_u18.unstack() 

 

2000 2010 
California 0.273594 0.249211 
New York 0.247010 0.222831 
Texas 0.283251 0.273568 

Methods of Multi Index Creation 
To construct a multiply indexed Series or DataFrame is to simply pass a list of two or more index arrays to the 

constructor. 

df = pd.DataFrame(np.random.rand(4, 2), 
index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], 
columns=['data1', 'data2']) 
df 

 

data1 data2 
a 1 0.554233 0.356072 
2 0.925244 0.219474 
b 1 0.441759 0.610054 
2 0.171495 0.886688 

if you pass a dictionary with appropriate tuples as keys, Pandas will automatically recognize this and use a 

MultiIndex by default. 
 

data = { ('California', 2000): 33871648, 
('California', 2010): 37253956, 
('Texas', 2000): 20851820, 
('Texas', 2010): 25145561, 
('New York', 2000): 18976457, 
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('New York', 2010): 19378102} 
pd.Series(data) 

 
California 2000 33871648 

 2010 37253956 
New York 2000 18976457 

 2010 19378102 
Texas 2000 20851820 

 

dtype: int64 
2010 25145561 

 
Explicit MultiIndex constructors 

You can construct the MultiIndex from a simple list of arrays, giving the index values within each level. 

pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]]) 
 

MultiIndex(levels=[['a', 'b'], [1, 2]], 
labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

 

Multi index from a list of tuples, 

pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)]) 
 

MultiIndex(levels=[['a', 'b'], [1, 2]], 
labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

 

Multi index from Cartesian product. 

pd.MultiIndex.from_product([['a', 'b'], [1, 2]]) 
 

MultiIndex(levels=[['a', 'b'], [1, 2]], 
labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

 

MultiIndex level names 

It is convenient to name the levels of the MultiIndex. You can accomplish this by passing the names argument 

to any of the above MultiIndex constructors, or by setting the names attribute of the index after the fact. 

pop.index.names = ['state', 'year'] 
pop 

 
state year 
California 2000 33871648 
 2010 37253956 
New York 2000 18976457 

 2010 19378102 
Texas 2000 20851820 

 2010 25145561 
dtype: int64  

 
MultiIndex for columns 

In a DataFrame, the rows and columns are completely symmetric, and just as the rows can have multiple levels 

of indices, the columns can have multiple levels as well. 
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# hierarchical indices and columns 
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]], 
names=['year', 'visit']) 
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']], 
names=['subject', 'type']) 

 

# mock some data 
data = np.round(np.random.randn(4, 6), 1) 
data[:, ::2] *= 10 
data += 37 

 
# create the DataFrame 

health_data = pd.DataFrame(data, index=index, columns=columns) 
health_data 

 

subject  Bob Guido Sue 
type HR Temp HR Temp HR Temp 
year visit 
2013 1 31.0 38.7 32.0 36.7 35.0 37.2 

2 44.0 37.7 50.0 35.0 29.0 36.7 
2014 1 30.0 37.4 39.0 37.8 61.0 36.9 

2 47.0 37.8 48.0 37.3 51.0 36.5 

Indexing and Slicing a MultiIndex 
Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you think about the indices as 

added dimensions. We’ll first look at indexing multiply indexed Series, and then multiply indexed DataFrames. 

 

Multiply indexed Series 

Pop 

 
state year 
California 2000 33871648 

 2010 37253956 
New York 2000 18976457 

 2010 19378102 
Texas 2000 20851820 

 2010 25145561 

dtype: int64 
 

 Access single elements 

We can access single elements by indexing with multiple terms 

pop['California', 2000] 
 

33871648 
 Partial indexing 

The MultiIndex also supports partial indexing, or indexing just one of the levels in the index 

pop['California'] 
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year 
2000 33871648 
2010 37253956 
dtype: int64 

 Partial slicing 

Partial slicing is available as well, as long as the MultiIndex is sorted. 

pop.loc['California':'New York'] 

 
state year 
California 2000 33871648 

 2010 37253956 
New York 2000 18976457 

 2010 19378102 
dtype: int64  

 

 Sorted indices 

With sorted indices, we can perform partial indexing on lower levels by passing an empty slice in the 

first index 

pop[:, 2000] 

 
state  

California 33871648 
ew York 18976457 
exas 20851820 
dtype: int64  

 

 Other types of indexing and selection 

Selection based on Boolean masks 

pop[pop > 22000000] 
 

state year 
California 2000 33871648 

2010 37253956 
Texas 2010 25145561 
dtype: int64 

 
Selection based on fancy indexing 

pop[['California', 'Texas']] 
 

state year 
California 2000 33871648 

2010 37253956 
Texas 2000 20851820 

2010 25145561 
dtype: int64 

 

Rearranging Multi-Indices 
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We saw a brief example of this in the stack() and unstack() methods, but there are many more ways to finely 

control the rearrangement of data between hierarchical indices and columns, and we’ll explore them here. 

 Sorted and unsorted indices 

We’ll start by creating some simple multiply indexed data where the indices are not lexographically sorted: 

 

index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]]) 
data = pd.Series(np.random.rand(6), index=index) 
data.index.names = ['char', 'int'] 
data 

char int 

a 1 0.003001 
 2 0.164974 
c 1 0.741650 

 
Pandas provides a number of convenience routines to perform this type of sorting; examples are the sort_index() 

and sortlevel() methods of the DataFrame. We’ll use the simplest, sort_index(), here: 

 

data = data.sort_index() 
data 

 
char int 

a 1 0.003001 
 2 0.164974 
b 1 0.001693 

 2 0.526226 
c 1 0.741650 

 2 0.569264 
dtype: float64 

 

With the index sorted in this way, partial slicing will work as expected: 

data['a':'b'] 

char int 

 
 
 

dtype: float64 
 

 Stacking and unstacking indices 

it is possible to convert a dataset from a stacked multi-index to a simple two-dimensional representation, 

optionally specifying the level to use. 

pop.unstack(level=0) 
 

state California New York Texas 
year 
2000 33871648 18976457 20851820 
2010 37253956 19378102 25145561 
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a 1 0.003001 
 2 0.164974 
b 1 0.001693 

 2 0.526226 
 



 
 

 

pop.unstack(level=1) 

 
year 
state 

2000 2010 

California 33871648 37253956 
New York 18976457 19378102 
Texas 20851820 25145561 

The opposite of unstack() is stack(), which here can be used to recover the original series: 

pop.unstack().stack() 

 
state year  

California 2000 33871648 
 2010 37253956 
New York 2000 18976457 

 2010 19378102 
Texas 2000 20851820 

2010 25145561 
dtype: int64 

 Index setting and resetting 

Another way to rearrange hierarchical data is to turn the index labels into columns; this can be accomplished 

with the reset_index method. Calling this on the population dictionary will result in a DataFrame with a state 

and year column holding the information that was formerly in the index. For clarity, we can optionally specify 

the name of the data for the column representation. 

pop_flat = pop.reset_index(name='population') 
pop_flat 

 
state year population 

0 California 2000 33871648 
1 California 2010 37253956 
2 New York 2000 18976457 
3 New York 2010 19378102 
4 Texas 2000 20851820 
5 Texas 2010 25145561 

 

Data Aggregations on Multi-Indices 
We’ve previously seen that Pandas has built-in data aggregation methods, such as mean(), sum(), and max(). 

For hierarchically indexed data, these can be passed a level parameter that controls which subset of the data the 

aggregate is computed on. 

For example, let’s return to our health data: (you can create your own data frame / series) 

health_data 

 
subject  Bob Guido Sue  

type HR Temp HR Temp HR Temp 
year visit 
2013 1 31.0 38.7 32.0 36.7 35.0 37.2 

2 44.0 37.7 50.0 35.0 29.0 36.7 
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2014 1 30.0 37.4 39.0 37.8 61.0 36.9 
2 47.0 37.8 48.0 37.3 51.0 36.5 

 
Calculate the average as follows 

data_mean = health_data.mean(level='year') 
data_mean 

 

subject Bob Guido Sue 
type HR Temp HR Temp HR Temp 
year 
2013 37.5 38.2 41.0 35.85 32.0 36.95 
2014 38.5 37.6 43.5 37.55 56.0 36.70 

By further making use of the axis keyword, we can take the mean among levels on the columns as well: 

data_mean.mean(axis=1, level='type') 
type HR Temp 
year 
2013 36.833333 37.000000 
2014 46.000000 37.283333 

 
 
 

 

Combining Datasets 

Concat and Append 
Simple Concatenation with pd.concat 
Pandas has a function, pd.concat(), which has a similar syntax to np.concatenate but contains a number of 

options that we’ll discuss momentarily 

pd.concat() can be used for a simple concatenation of Series or DataFrame objects, just as np.concatenate() can 

be used for simple concatenations of arrays 

ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3]) 
ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6]) 
pd.concat([ser1, ser2]) 

 

1 A 
2 B 
3 C 
4 D 
5 E 
6 F 
dtype: object 

 
Concatenation in data frame. 

df1 = make_df('AB', [1, 2]) 
df2 = make_df('AB', [3, 4]) 
print(df1); print(df2); print(pd.concat([df1, df2])) 

 

df3 df4 pd.concat([df3, df4], axis='col') 
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A B C D A B C D 
0 A0 B0 0 C0 D0 0 A0 B0 C0 D0 
1 A1 B1 1 C1 D1 1 A1 B1 C1 D1 

 
Duplicate indices 

One important difference between np.concatenate and pd.concat is that Pandas concatenation preserves indices, 

even if the result will have duplicate indices! Consider this simple example. 

 
x = make_df('AB', [0, 1]) 

y = make_df('AB', [2, 3]) 
 

y.index = x.index # make duplicate indices! 
print(x); print(y); print(pd.concat([x, y])) 

 

x y pd.concat([x, y]) 
A B A B A B 

0 A0 B0 0 A2 B2 0 A0 B0 
1 A1 B1 1 A3 B3 1 A1 B1 
0 A2 B2 
1 A3 B3 

 
The append() method 

Series and DataFrame objects have an append method that can accomplish the same thing in fewer keystrokes. 

For example, rather than calling pd.concat([df1, df2]), you can simply call df1.append(df2): 

print(df1); print(df2); print(df1.append(df2)) 
df1 df2 df1.append(df2) 

A B A B A B 
1 A1 B1 3 A3 B3 1 A1 B1 
2 A2 B2 4 A4 B4 2 A2 B2 
3 A3 B3 
4 A4 B4 

 

Merge and Join 

One essential feature offered by Pandas is its high-performance, in-memory join and merge operations. 

 

Categories of Joins 
 One-to-one joins 

 Many-to-one joins 

 Many-to-many joins 

 

One – to – one joins 

The simplest type of merge expression is the one-to-one join, which is in many ways very similar to the 

column-wise concatenation. 

df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 
'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) 

 

df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 
'hire_date': [2004, 2008, 2012, 2014]}) 
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print(df1); print(df2) 

 
df1   df2 

 employee group employee hire_date 
0 Bob Accounting 0 Lisa 2004 
1 Jake Engineering 1 Bob 2008  

2 Lisa Engineering 2 Jake 2012  

3 Sue HR   3 Sue 2014 
To combine this information into a single DataFrame, we can use the pd.merge() function 

df3 = pd.merge(df1, df2) 
df3 

 

employee group hire_date 
0 Bob Accounting 2008 
1 Jake Engineering 2012 
2 Lisa Engineering 2004 
3 Sue HR 2014 

 
Many-to-one joins 

Many-to-one joins are joins in which one of the two key columns contains duplicate entries. For the many-to- 

one case, the resulting DataFrame will preserve those duplicate entries as appropriate. 

df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'], 
'supervisor': ['Carly', 'Guido', 'Steve']}) 

pd.merge(df3, df4) 
 

employee group hire_date supervisor 
0 Bob Accounting 2008 Carly 
1 Jake Engineering 2012 Guido 
2 Lisa Engineering 2004 Guido 
3 Sue HR 2014 Steve 

The resulting DataFrame has an additional column with the “supervisor” information, where the information is 

repeated in one or more locations as required by the inputs. 

 

Many-to-many joins 

Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined. If the key column in 

both the left and right array contains duplicates, then the result is a many-to-many merge. This will be perhaps 

most clear with a concrete example. 

df5 = pd.DataFrame({'group': ['Accounting', 'Accounting', 'Engineering', 'Engineering', 'HR', 'HR'], 'skills': 
['math', 'spreadsheets', 'coding', 'linux', 'spreadsheets', 'organization']}) 
pd.merge(df1, df5) 

 
employee group skills 

0 Bob Accounting math 
1 Bob Accounting spreadsheets 
2 Jake Engineering coding 
3 Jake Engineering linux 
4 Lisa Engineering coding 
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5 Lisa Engineering linux  

6 Sue HR  spreadsheets 
7 Sue HR  organization 

 

Aggregation and Grouping 
Computing aggregations like sum(), mean(), median(), min(), and max(), in which a single number gives insight 

into the nature of a potentially large dataset. 

 

Simple Aggregation in Pandas 

As with a one dimensional NumPy array, for a Pandas Series the aggregates return a single value. 

rng = np.random.RandomState(42) 
ser = pd.Series(rng.rand(5)) 
ser 

 

 
 
 
 
 

 
Sum 

0 0.374540 
1 0.950714 
2 0.731994 
3 0.598658 
4 0.156019 
dtype: float64 

 

ser.sum() 
2.8119254917081569 

 

Mean  
ser.mean() 
0.56238509834163142 

The same operations also performed in DataFrame 
 

Listing of Pandas aggregation methods 

Aggregation Description 

count() Total number of items 

first(), last() First and last item 

mean(), median() Mean and median 

min(), max() Minimum and maximum 

std(), var() Standard deviation and variance 

mad() Mean absolute deviation 

prod() Product of all items 

sum() Sum of all items 

 

GroupBy: Split, Apply, Combine 

Simple aggregations can give you a flavor of your dataset, but often we would prefer to aggregate conditionally 

on some label or index: this is implemented in the socalled groupby operation. The name “group by” comes 

from a command in the SQL database language, but it is perhaps more illuminative to think of it in the terms 

first coined by Hadley Wickham of Rstats fame: split, apply, combine. 

 

• The split step involves breaking up and grouping a DataFrame depending on the value of the specified key. 

• The apply step involves computing some function, usually an aggregate, transformation, or filtering, within 

the individual groups. 
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• The combine step merges the results of these operations into an output array. 
 
 

 

Example 

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 
'data': range(6)}, columns=['key', 'data']) 

Df 
 

key data 

0 A 0 
1 B 1 
2 C 2 
3 A 3 
4 B 4 
5 C 5 

 

The GroupBy object 

The GroupBy object is a very flexible abstraction. The most important operations made available by a GroupBy 

are aggregate, filter, transform, and apply. 

 

Groupby supports the basic operations like. 

 Column indexing.

 Iteration over groups.

 Dispatch methods.

 Aggregate, filter, transform, apply
 

Column indexing. 

The GroupBy object supports column indexing in the same way as the DataFrame, and returns a modified GroupBy 

object. For example 

df=pd.read_csv('D:\iris.csv') 
df.groupby('variety') 

 
<pandas.core.groupby.generic.DataFrameGroupBy object at 

0x0000023BAADE84C0> 

 

df.groupby(' variety)[' petal.length''] 
 

<pandas.core.groupby.generic.SeriesGroupBy object at 0x0000023BAADE8490> 
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df.groupby(' variety ')[ “petal.length''].sum() 
 

variety Setosa 73.1 

Versicolor 213.0 

Virginica 277.6 

Name: petal.length, dtype: float64 

 

Iteration over groups. 

The GroupBy object supports direct iteration over the groups, returning each group as a Series or DataFrame. 
This can be useful for doing certain things manually, though it is often much faster to use the built-in apply functionality, 

which we will discuss momentarily. 

 

Dispatch methods. 

Through some Python class magic, any method not explicitly implemented by the GroupBy object will be passed through 

and called on the groups, whether they are DataFrame or Series objects. For example, you can use the describe() method 

of DataFrames to perform a set of aggregations that describe each group in the data. 

 

Example 

df.groupby('variety')['petal.length'].describe().unstack() 
 

variety 

count Setosa 50.000000 

 Versicolor 50.000000 

 Virginica 50.000000 

mean Setosa 1.462000 

 Versicolor 4.260000 

 Virginica 5.552000 

std Setosa 0.173664 

 Versicolor 0.469911 

 Virginica 0.551895 

min Setosa 1.000000 

 Versicolor 3.000000 

 Virginica 4.500000 

25% Setosa 1.400000 

 Versicolor 4.000000 

 Virginica 5.100000 

50% Setosa 1.500000 

 Versicolor 4.350000 

 Virginica 5.550000 

75% Setosa 1.575000 

 Versicolor 4.600000 

 Virginica 5.875000 

max Setosa 1.900000 

 Versicolor 5.100000 

 Virginica 6.900000 

dtype: float64  

 

Aggregate, filter, transform,and apply 

rng = np.random.RandomState(0) 
df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 
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'data1': range(6), 
'data2': rng.randint(0, 10, 6)}, 
columns = ['key', 'data1', 'data2']) 
df 

 
 
 

key data1 data2 

0 A 0 5 
1 B 1 0 
2 C 2 3 
3 A 3 3 
4 B 4 7 
5 C 5 9 

Aggregation. 

We’re now familiar with GroupBy aggregations with sum(), median(), and the like, but the aggregate() method 

allows for even more flexibility. It can take a string, a function, or a list thereof, and compute all the aggregates 

at once. Here is a quick example combining all these: 

 

df.groupby('key').aggregate(['min', np.median, max]) 

data1 data2 

min median max min median max 

key  

A 0 1.5 3 3 4.0 5 
B 1 2.5 4 0 3.5 7 
C 2 3.5 5 3 6.0 9 

 
Filtering. 

A filtering operation allows you to drop data based on the group properties. For example, we might want to 

keep all groups in which the standard deviation is larger than some critical value. 

The filter() function should return a Boolean value specifying whether the group passes the filtering. 

 

Transformation. 

While aggregation must return a reduced version of the data, transformation can return some transformed 

version of the full data to recombine. For such a transformation, the output is the same shape as the input. A 

common example is to center the data by subtracting the group-wise mean: 

 

df.groupby('key').transform(lambda x: x - x.mean()) 

 
 data1 data2  
0 -1.5 1.0 
1 -1.5 -3.5 
2 -1.5 -3.0 
3 1.5  -1.0 
4 1.5  3.5 
5 1.5  3.0 
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The apply() method. 

The apply() method lets you apply an arbitrary function to the group results. The function should take a 

DataFrame, and return either a Pandas object (e.g., DataFrame, Series) or a scalar; the combine operation will 

be tailored to the type of output returned. 
 

Pivot Tables 
A pivot table is a similar operation that is commonly seen in spreadsheets and other programs that operate on 

tabular data. The pivot table takes simple column wise data as input, and groups the entries into a two- 

dimensional table that provides a multidimensional summarization of the data. The difference between pivot 

tables and GroupBy can sometimes cause confusion; it helps me to think of pivot tables as essentially a 

multidimensional version of GroupBy aggregation. That is, you split apply- combine, but both the split and the 

combine happen across not a one-dimensional index, but across a two-dimensional grid. 

 

Pivot Table Creation 

import numpy as np 
import pandas as pd 
df=pd.read_csv('D:\diabetes.csv') 
df.pivot_table('preg',index='age',columns='Class').sample(10) 

 

#here diabetes data set has large no of rows so we use sample() 
 

 
 

Class tested_negative tested_positive 

 
age 

  

 

63 

 

5.500000 

 

NaN 

 

28 

 

3.440000 

 

2.000000 

 

61 

 

7.000000 

 

4.000000 

 

69 

 

5.000000 

 

NaN 

 

45 

 

7.285714 

 

7.375000 

 

62 

 

6.500000 

 

1.000000 
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2.000000 

 

6.250000 

 

68 

 

8.000000 

 

NaN 

 

23 

 

1.516129 

 

1.857143 
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Class tested_negative tested_positive 

 
age 
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13.000000 

 
3.428571 
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UNIT V 

DATA VISUALIZATION 

Importing Matplotlib – Line plots – Scatter plots – visualizing errors – density and contour plots – Histograms – 

legends – colors – subplots – text and annotation – customization – three dimensional plotting - Geographic Data 

with Basemap - Visualization with Seaborn. 

 

Simple Line Plots 
The simplest of all plots is the visualization of a single function y = f x . Here we will take a first look at creating a 

simple plot of this type. 

The figure (an instance of the class plt.Figure) can be thought of as a single container that contains all the objects 

representing axes, graphics, text, and labels. 

The axes (an instance of the class plt.Axes) is what we see above: a bounding box with ticks and labels, which will 

eventually contain the plot elements that make up our visualization. 

 

Line Colors and Styles 

 The first adjustment you might wish to make to a plot is to control the line colors and styles. 

 To adjust the color, you can use the color keyword, which accepts a string argument representing virtually 

any imaginable color. The color can be specified in a variety of ways 

 If no color is specified, Matplotlib will automatically cycle through a set of default colors for multiple lines 

 

Different forms of color representation. 

specify color by name - color='blue' 

short color code (rgbcmyk) - color='g' 

Grayscale between 0 and 1 - color='0.75' 

Hex code (RRGGBB from 00 to FF) - color='#FFDD44' 

RGB tuple, values 0 and 1 - color=(1.0,0.2,0.3) 

all HTML color names supported - color='chartreuse' 

 

 We can adjust the line style using the linestyle keyword. 

Different line styles 

linestyle='solid' 
linestyle='dashed' 
linestyle='dashdot' 
linestyle='dotted' 

 

Short assignment 

linestyle='-' # solid 
linestyle='--' # dashed 
linestyle='-.' # dashdot 
linestyle=':' # dotted 

 

 linestyle and color codes can be combined into a single nonkeyword argument to the plt.plot() function 

plt.plot(x, x + 0, '-g') # solid green 
plt.plot(x, x + 1, '--c') # dashed cyan 
plt.plot(x, x + 2, '-.k') # dashdot black 
plt.plot(x, x + 3, ':r'); # dotted red 

 
 

Axes Limits 
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 The most basic way to adjust axis limits is to use the plt.xlim() and plt.ylim() methods 

Example 

plt.xlim(10, 0) 

plt.ylim(1.2, -1.2); 
 The plt.axis() method allows you to set the x and y limits with a single call, by passing a list that specifies 

[xmin, xmax, ymin, ymax] 

plt.axis([-1, 11, -1.5, 1.5]); 
 

 Aspect ratio equal is used to represent one unit in x is equal to one unit in y. plt.axis('equal') 
 

Labeling Plots 

The labeling of plots includes titles, axis labels, and simple legends. 

Title - plt.title() 
Label - plt.xlabel() 

plt.ylabel() 
Legend - plt.legend() 

 
Example programs 

Line color 

import matplotlib.pyplot as plt 

import numpy as np 

fig = plt.figure() 

ax = plt.axes() 

x = np.linspace(0, 10, 1000) 

ax.plot(x, np.sin(x)); 

plt.plot(x, np.sin(x - 0), color='blue') # specify color by name 

plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk) 

plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1 

plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to FF) 

plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1 

plt.plot(x, np.sin(x - 5), color='chartreuse');# all HTML color names supported 

 

Line style 

import matplotlib.pyplot as plt 
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import numpy as np 

fig = plt.figure() 

ax = plt.axes() 

x = np.linspace(0, 10, 1000) 

plt.plot(x, x + 0, linestyle='solid') 

plt.plot(x, x + 1, linestyle='dashed') 

plt.plot(x, x + 2, linestyle='dashdot') 

plt.plot(x, x + 3, linestyle='dotted'); 

# For short, you can use the following codes: 

plt.plot(x, x + 4, linestyle='-') # solid 

plt.plot(x, x + 5, linestyle='--') # dashed 

plt.plot(x, x + 6, linestyle='-.') # dashdot 

plt.plot(x, x + 7, linestyle=':'); # dotted 

Axis limit with label and legend 

 

import matplotlib.pyplot as plt 

import numpy as np 

fig = plt.figure() 

ax = plt.axes() 

x = np.linspace(0, 10, 1000) 

plt.xlim(-1, 11) 

plt.ylim(-1.5, 1.5); 

plt.plot(x, np.sin(x), '-g', label='sin(x)') 

plt.plot(x, np.cos(x), ':b', label='cos(x)') 

plt.title("A Sine Curve") 

plt.xlabel("x") 

plt.ylabel("sin(x)"); 

plt.legend(); 

 

 

 

 

Simple Scatter Plots 
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Another commonly used plot type is the simple scatter plot, a close cousin of the line plot. Instead of points being 

joined by line segments, here the points are represented individually with a dot, circle, or other shape. 

Syntax 

plt.plot(x, y, 'type of symbol ', color); 
 

Example 
plt.plot(x, y, 'o', color='black'); 

 The third argument in the function call is a character that represents the type of symbol used for the plotting. 

Just as you can specify options such as '-' and '--' to control the line style, the marker style has its own set of 

short string codes. 

Example 

 Various symbols used to specify ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd'] 
 

 Short hand assignment of line, symbol and color also allowed. 

 

plt.plot(x, y, '-ok'); 
 

 Additional arguments in plt.plot() 

We can specify some other parameters related with scatter plot which makes it more attractive. They are 

color, marker size, linewidth, marker face color, marker edge color, marker edge width, etc 

 

Example 

plt.plot(x, y, '-p', color='gray', 
markersize=15, linewidth=4, 
markerfacecolor='white', 
markeredgecolor='gray', 
markeredgewidth=2) 
plt.ylim(-1.2, 1.2); 

 

Scatter Plots with plt.scatter 

 A second, more powerful method of creating scatter plots is the plt.scatter function, which can be used very 

similarly to the plt.plot function 

plt.scatter(x, y, marker='o'); 
 The primary difference of plt.scatter from plt.plot is that it can be used to create scatter plots where the 

properties of each individual point (size, face color, edge color, etc.) can be individually controlled or 

mapped to data. 

 Notice that the color argument is automatically mapped to a color scale (shown here by the colorbar() 

command), and the size argument is given in pixels. 

 Cmap – color map used in scatter plot gives different color combinations. 
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Perceptually Uniform Sequential 

['viridis', 'plasma', 'inferno', 'magma'] 

Sequential 

['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 

'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 

'YlGn'] 

Sequential (2) 

['binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 

'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper'] 
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Example programs. 

 

Simple scatter plot. 

import numpy as np 

import matplotlib.pyplot as plt 

x = np.linspace(0, 10, 30) 

y = np.sin(x) 

plt.plot(x, y, 'o', color='black'); 

 

Scatter plot with edge color, face color, size, 

and width of marker. (Scatter plot with line) 

 
import numpy as np 

import matplotlib.pyplot as plt 

x = np.linspace(0, 10, 20) 

y = np.sin(x) 

plt.plot(x, y, '-o', color='gray', 

markersize=15, linewidth=4, 

markerfacecolor='yellow', 

markeredgecolor='red', 

markeredgewidth=4) 

plt.ylim(-1.5, 1.5); 
 

 

 

 

Scatter plot with random colors, size and transparency 

import numpy as np 

import matplotlib.pyplot as plt 

rng = np.random.RandomState(0) 

x = rng.randn(100) 

y = rng.randn(100) 

colors = rng.rand(100) 

sizes = 1000 * rng.rand(100) 

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, map='viridis') 

plt.colorbar() 
 

Visualizing Errors 
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Diverging 

['PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 

'coolwarm', 'bwr', 'seismic'] 

Qualitative 

['Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 

'tab10', 'tab20', 'tab20b', 'tab20c'] 

Miscellaneous 

['flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 

'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', 'gist_rainbow', 'rainbow', 

'jet', 'nipy_spectral', 'gist_ncar'] 
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For any scientific measurement, accurate accounting for errors is nearly as important, if not more important, than 

accurate reporting of the number itself. For example, imagine that I am using some astrophysical observations to 

estimate the Hubble Constant, the local measurement of the expansion rate of the Universe. 

In visualization of data and results, showing these errors effectively can make a plot convey much more complete 

information. 

 

Types of errors 

 Basic Errorbars 

 Continuous Errors 

 

Basic Errorbars 

A basic errorbar can be created with a single Matplotlib function call. 

import matplotlib.pyplot as plt 
plt.style.use('seaborn-whitegrid') 
import numpy as np 
x = np.linspace(0, 10, 50) 
dy = 0.8 
y = np.sin(x) + dy * np.random.randn(50) 
plt.errorbar(x, y, yerr=dy, fmt='.k'); 

 

 
 Here the fmt is a format code controlling the appearance of lines and points, and has the same syntax as the 

shorthand used in plt.plot() 

 In addition to these basic options, the errorbar function has many options to fine tune the outputs. Using 

these additional options you can easily customize the aesthetics of your errorbar plot. 

 

plt.errorbar(x, y, yerr=dy, fmt='o', color='black',ecolor='lightgray', elinewidth=3, capsize=0); 
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Continuous Errors 

 In some situations it is desirable to show errorbars on continuous quantities. Though Matplotlib does not 

have a built-in convenience routine for this type of application, it’s relatively easy to combine primitives 

like plt.plot and plt.fill_between for a useful result. 

 Here we’ll perform a simple Gaussian process regression (GPR), using the Scikit-Learn API. This is a 

method of fitting a very flexible nonparametric function to data with a continuous measure of the 

uncertainty. 
 

Density and Contour Plots 
To display three-dimensional data in two dimensions using contours or color-coded regions. 

There are three Matplotlib functions that can be helpful for this task: 

 plt.contour for contour plots, 

 plt.contourf for filled contour plots, and 

 plt.imshow for showing images. 

 

Visualizing a Three-Dimensional Function 

A contour plot can be created with the plt.contour function. It 

takes three arguments: 

 a grid of x values, 

 a grid of y values, and 

 a grid of z values. 

The x and y values represent positions on the plot, and the z 

values will be represented by the contour levels. 

The way to prepare such data is to use the np.meshgrid 
function, which builds two-dimensional grids from one- 

dimensional arrays: 

Example 
def f(x, y): 

return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) 
x = np.linspace(0, 5, 50) 
y = np.linspace(0, 5, 40) 
X, Y = np.meshgrid(x, y) 
Z = f(X, Y) 

plt.contour(X, Y, Z, colors='black'); 
 

 Notice that by default when a single color is used, negative values are represented by dashed lines, and 

positive values by solid lines. 

 Alternatively, you can color-code the lines by specifying a colormap with the cmap argument. 

 We’ll also specify that we want more lines to be drawn—20 equally spaced intervals within the data range. 
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plt.contour(X, Y, Z, 20, cmap='RdGy'); 
 One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps are discrete rather than 

continuous, which is not always what is desired. 

 You could remedy this by setting the number of contours to a very high number, but this results in a rather 

inefficient plot: Matplotlib must render a new polygon for each step in the level. 

 A better way to handle this is to use the plt.imshow() function, which interprets a two-dimensional grid of 

data as an image. 

 
There are a few potential gotchas with imshow(). 

 plt.imshow() doesn’t accept an x and y grid, so you must manually specify the extent [xmin, xmax, ymin, 

ymax] of the image on the plot. 

 plt.imshow() by default follows the standard image array definition where the origin is in the upper left, not 

in the lower left as in most contour plots. This must be changed when showing gridded data. 

 plt.imshow() will automatically adjust the axis aspect ratio to match the input data; you can change this by 

setting, for example, plt.axis(aspect='image') to make x and y units match. 

 

Finally, it can sometimes be useful to combine contour 

plots and image plots. we’ll use a partially transparent 

background image (with transparency set via the alpha 

parameter) and over-plot contours with labels on the 

contours themselves (using the plt.clabel() function): 

contours = plt.contour(X, Y, Z, 3, colors='black') 
plt.clabel(contours, inline=True, fontsize=8) 
plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower', 
cmap='RdGy', alpha=0.5) 
plt.colorbar(); 

 

Example Program 

import numpy as np 
import matplotlib.pyplot as plt 
def f(x, y): 
return np.sin(x) ** 10 + np.cos(10 + y * x) * 
np.cos(x) 
x = np.linspace(0, 5, 50) 
y = np.linspace(0, 5, 40) 
X, Y = np.meshgrid(x, y) 
Z = f(X, Y) 
plt.imshow(Z, extent=[0, 10, 0, 10], 
origin='lower', cmap='RdGy') 
plt.colorbar() 

Histograms 
 Histogram is the simple plot to represent the large data set. A histogram is a graph showing frequency 

distributions. It is a graph showing the number of observations within each given interval. 

 

Parameters 

 plt.hist( ) is used to plot histogram. The hist() function will use an array of numbers to create a histogram, 

the array is sent into the function as an argument. 
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 bins - A histogram displays numerical data by grouping data into "bins" of equal width. Each bin is plotted 

as a bar whose height corresponds to how many data points are in that bin. Bins are also sometimes called 

"intervals", "classes", or "buckets". 

 normed - Histogram normalization is a technique to distribute the frequencies of the histogram over a wider 

range than the current range. 

 x - (n,) array or sequence of (n,) arrays Input values, this takes either a single array or a sequence of arrays 

which are not required to be of the same length. 

 histtype - {'bar', 'barstacked', 'step', 'stepfilled'}, optional 

The type of histogram to draw. 

 

 'bar' is a traditional bar-type histogram. If multiple data are given the bars are arranged side by side. 

 'barstacked' is a bar-type histogram where multiple data are stacked on top of each other. 

 'step' generates a lineplot that is by default unfilled. 

 'stepfilled' generates a lineplot that is by default filled. 

Default is 'bar' 

 align - {'left', 'mid', 'right'}, optional 

Controls how the histogram is plotted. 

 

 'left': bars are centered on the left bin edges. 

 'mid': bars are centered between the bin edges. 

 'right': bars are centered on the right bin edges. 

Default is 'mid' 

 orientation - {'horizontal', 'vertical'}, optional 

If 'horizontal', barh will be used for bar-type histograms and the bottom kwarg will be the left edges. 

 color - color or array_like of colors or None, optional 

Color spec or sequence of color specs, one per dataset. Default (None) uses the standard line color sequence. 

 

Default is None 

 label - str or None, optional. Default is None 

 

Other parameter 

 **kwargs - Patch properties, it allows us to pass a 

variable number of keyword arguments to a 

python function. ** denotes this type of function. 

 

Example 

import numpy as np 
import matplotlib.pyplot as plt 
plt.style.use('seaborn-white') 
data = np.random.randn(1000) 
plt.hist(data); 

 
 

The hist() function has many options to tune both the calculation and the display; here’s an example of a more 

customized histogram. 

plt.hist(data, bins=30, alpha=0.5,histtype='stepfilled', color='steelblue',edgecolor='none'); 
 

The plt.hist docstring has more information on other customization options available. I find this combination of 

histtype='stepfilled' along with some transparency alpha to be very useful when comparing histograms of several 

distributions 
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x1 = np.random.normal(0, 0.8, 1000) 
x2 = np.random.normal(-2, 1, 1000) 
x3 = np.random.normal(3, 2, 1000) 
kwargs = dict(histtype='stepfilled', alpha=0.3, bins=40) 
plt.hist(x1, **kwargs) 
plt.hist(x2, **kwargs) 
plt.hist(x3, **kwargs); 

Two-Dimensional Histograms and Binnings 

 We can create histograms in two dimensions by dividing points among two dimensional bins. 

 We would define x and y values. Here for example We’ll start by defining some data—an x and y array 

drawn from a multivariate Gaussian distribution: 

 Simple way to plot a two-dimensional histogram is to use Matplotlib’s plt.hist2d() function 

 

Example 

mean = [0, 0] 
cov = [[1, 1], [1, 2]] 
x, y = np.random.multivariate_normal(mean, cov, 1000).T 
plt.hist2d(x, y, bins=30, cmap='Blues') 
cb = plt.colorbar() 
cb.set_label('counts in bin') 
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Legends 
Plot legends give meaning to a visualization, assigning labels to the various plot elements. We previously saw how 

to create a simple legend; here we’ll take a look at customizing the placement and aesthetics of the legend in 

Matplotlib. 

Plot legends give meaning to a visualization, assigning labels to the various plot elements. We previously saw how 

to create a simple legend; here we’ll take a look at customizing the placement and aesthetics of the legend in 

Matplotlib 

plt.plot(x, np.sin(x), '-b', label='Sine') 
plt.plot(x, np.cos(x), '--r', label='Cosine') 
plt.legend(); 

 
 

Customizing Plot Legends 

Location and turn off the frame - We can specify the location and turn off the frame. By the parameter loc and 

framon. 

ax.legend(loc='upper left', frameon=False) 
fig 

 

Number of columns - We can use the ncol command to specify the number of columns in the legend. 

ax.legend(frameon=False, loc='lower center', ncol=2) 
fig 

 
Rounded box, shadow and frame transparency 
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We can use a rounded box (fancybox) or add a shadow, change the transparency (alpha value) of the frame, or 

change the padding around the text. 

ax.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1) 
fig 

 

Choosing Elements for the Legend 

 The legend includes all labeled elements by default. We can change which elements and labels appear in the 

legend by using the objects returned by plot commands. 

 The plt.plot() command is able to create multiple lines at once, and returns a list of created line instances. 

Passing any of these to plt.legend() will tell it which to identify, along with the labels we’d like to specify 

y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5)) 
lines = plt.plot(x, y) 
plt.legend(lines[:2],['first','second']); 

 

# Applying label individually. 
plt.plot(x, y[:, 0], label='first') 
plt.plot(x, y[:, 1], label='second') 
plt.plot(x, y[:, 2:]) 
plt.legend(framealpha=1, frameon=True); 

 

Multiple legends 

It is only possible to create a single legend for the entire plot. If you 

try to create a second legend using plt.legend() or ax.legend(), it will 

simply override the first one. We can work around this by creating a 

new legend artist from scratch, and then using the lower-level ax.add_artist() method to manually add the second 

artist to the plot 

 
 

Example 

import matplotlib.pyplot as plt 
plt.style.use('classic') 
import numpy as np 
x = np.linspace(0, 10, 1000) 
ax.legend(loc='lower center', frameon=True, shadow=True,borderpad=1,fancybox=True) 
fig 

 

Color Bars 
In Matplotlib, a color bar is a separate axes that can provide a key for the meaning of colors in a plot. For 

continuous labels based on the color of points, lines, or regions, a labeled color bar can be a great tool. 

The simplest colorbar can be created with the plt.colorbar() function. 

 

Customizing Colorbars 

Choosing color map. 

We can specify the colormap using the cmap argument to the plotting function that is creating the visualization. 

Broadly, we can know three different categories of colormaps: 

 Sequential colormaps - These consist of one continuous sequence of colors (e.g., binary or viridis). 

 Divergent colormaps -  These  usually contain two distinct colors, which  show  positive and negative 

deviations from a mean (e.g., RdBu or PuOr). 

 Qualitative colormaps - These mix colors with no particular sequence (e.g., rainbow or jet). 
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Color limits and extensions 

 Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply an instance of 

plt.Axes, so all of the axes and tick formatting tricks we’ve learned are applicable. 

 We can narrow the color limits and indicate the out-of-bounds values with a triangular arrow at the top and 

bottom by setting the extend property. 

plt.subplot(1, 2, 2) 
plt.imshow(I, cmap='RdBu') 
plt.colorbar(extend='both') 
plt.clim(-1, 1); 

 

 
Discrete colorbars 

Colormaps are by default continuous, but sometimes you’d like to 

represent discrete values. The easiest way to do this is to use the 

plt.cm.get_cmap() function, and pass the name of a suitable colormap 

along with the number of desired bins. 

plt.imshow(I, cmap=plt.cm.get_cmap('Blues', 6)) 
plt.colorbar() 

plt.clim(-1, 1); 
 
 

Subplots 
 Matplotlib has the concept of subplots: groups of smaller axes that can exist together within a single figure. 

 These subplots might be insets, grids of plots, or other more complicated layouts. 

 We’ll explore four routines for creating subplots in Matplotlib. 

 plt.axes: Subplots by Hand 

 plt.subplot: Simple Grids of Subplots 

 plt.subplots: The Whole Grid in One Go 

 plt.GridSpec: More Complicated Arrangements 

 

plt.axes: Subplots by Hand 

 The most basic method of creating an axes is to use the plt.axes function. As we’ve seen previously, by 

default this creates a standard axes object that fills the entire figure. 

 plt.axes also takes an optional argument that is a list of four numbers in the figure coordinate system. 

 These numbers represent [bottom, left, width,height] in the figure coordinate system, which ranges from 0 at 

the bottom left of the figure to 1 at the top right of the figure. 
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For example, 

we might create an inset axes at the top-right corner of another 

axes by setting the x and y position to 0.65 (that is, starting at 

65% of the width and 65% of the height of the figure) and the x 

and y extents to 0.2 (that is, the size of the axes is 20% of the 

width and 20% of the height of the figure). 

 

import matplotlib.pyplot as plt 
import numpy as np 
ax1 = plt.axes() # standard axes 
ax2 = plt.axes([0.65, 0.65, 0.2, 0.2]) 

 
 

Vertical sub plot 

The equivalent of plt.axes() command within the 

object-oriented interface is ig.add_axes(). Let’s use this 

to create two vertically stacked axes. 
fig = plt.figure() 

ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4], 
xticklabels=[], ylim=(-1.2, 1.2)) 
ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4], 
ylim=(-1.2, 1.2)) 
x = np.linspace(0, 10) 
ax1.plot(np.sin(x)) 
ax2.plot(np.cos(x)); 

 We now have two axes (the top with no tick 

labels) that are just touching: the bottom of the 

upper panel (at position 0.5) matches the top of 

the lower panel (at position 0.1+ 0.4). 

 If the axis value is changed in second plot both 

the plots are separated with each other, example 

ax2 = fig.add_axes([0.1, 0.01, 0.8, 0.4 
 

plt.subplot: Simple Grids of Subplots 

 Matplotlib has several convenience routines to align columns or rows of subplots. 

 The lowest level of these is plt.subplot(), which creates a single subplot within a grid. 

 

 

 

 
 This command takes three integer 

arguments—the number of rows, the number 

of columns, and the index of the plot to be 

created in this scheme, which runs from the 

upper left to the bottom right 

for i in range(1, 7): 
plt.subplot(2, 3, i) 
plt.text(0.5, 0.5, str((2, 3, i)), 
fontsize=18, ha='center') 
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plt.subplots: The Whole Grid in One Go 

 The approach just described can become quite tedious when you’re creating a large grid of subplots, 

especially if you’d like to hide the x- and y- 

axis labels on the inner plots. 

 For this purpose, plt.subplots() is the easier 

tool to use (note the s at the end of subplots). 

 Rather than creating a single subplot, this 

function creates a full grid of subplots in a 

single line, returning them in a NumPy array. 

 The arguments are the number of rows and 

number of columns, along with optional 

keywords sharex and sharey, which allow you 

to specify the relationships between different 

axes. 

 Here we’ll create a 2×3 grid of subplots, 

where all axes in the same row share their y- 

axis scale, and all axes in the same column 

share their x-axis scale 

fig, ax = plt.subplots(2, 3, sharex='col', 
sharey='row') 
Note that by specifying sharex and sharey, we’ve 

automatically removed inner labels on the grid to 

make the plot cleaner. 

 

plt.GridSpec: More Complicated Arrangements 

To go beyond a regular grid to subplots that span multiple rows and columns, plt.GridSpec() is the best tool. 

The plt.GridSpec() object does not create a plot by itself; it is simply a convenient interface that is recognized 

by the plt.subplot() command. 

 

For example, a gridspec for a grid of two rows and three columns with some specified width and height space 

looks like this: 

 

 
 

grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3) 
From this we can specify subplot locations and extents 

plt.subplot(grid[0, 0]) 
plt.subplot(grid[0, 1:]) 
plt.subplot(grid[1, :2]) 
plt.subplot(grid[1, 2]); 

 
 
 
 

Text and Annotation 
 The most basic types of annotations we will use are axes labels and titles, here we will see some more 

visualization and annotation information’s. 
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 Text annotation can be done manually with the plt.text/ax.text command, which will place text at a 

particular x/y value. 

 The ax.text method takes an x position, a y position, a string, and then optional keywords specifying the 

color, size, style, alignment, and other properties of the text. Here we used ha='right' and ha='center', where 

ha is short for horizontal alignment. 

 

Transforms and Text Position 

 We anchored our text annotations to data locations. Sometimes it’s preferable to anchor the text to a position 

on the axes or figure, independent of the data. In Matplotlib, we do this by modifying the transform. 

 Any graphics display framework needs some scheme for translating between coordinate systems. 

 Mathematically, such coordinate transformations are relatively straightforward, and Matplotlib has a well- 

developed set of tools that it uses internally to perform them (the tools can be explored in the 

matplotlib.transforms submodule). 

 There are three predefined transforms that can be useful in this situation. 

 

o ax.transData - Transform associated with data coordinates 

o ax.transAxes - Transform associated with the axes (in units of axes dimensions) 

o fig.transFigure - Transform associated with the figure (in units of figure dimensions) 
 

Example 

import matplotlib.pyplot as plt 
import matplotlib as mpl 
plt.style.use('seaborn-whitegrid') 
import numpy as np 
import pandas as pd 
fig, ax = plt.subplots(facecolor='lightgray') 
ax.axis([0, 10, 0, 10]) 
# transform=ax.transData is the default, but we'll specify it anyway 
ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData) 
ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes) 
ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure); 
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Note that by default, the text is aligned above and to the left of the specified coordinates; here the “.” at the 

beginning of each string will approximately mark the given coordinate location. 

 

The transData coordinates give the usual data coordinates associated with the x- and y-axis labels. The transAxes 

coordinates give the location from the bottom-left corner of the axes (here the white box) as a fraction of the axes 

size. 

 

The transfigure coordinates are similar, but specify the position from the bottom left of the figure (here the gray 

box) as a fraction of the figure size. 

Notice now that if we change the axes limits, it is only the transData coordinates that will be affected, while the 

others remain stationary. 

 

Arrows and Annotation 

 Along with tick marks and text, another useful annotation mark is the simple arrow. 

 Drawing arrows in Matplotlib is not much harder because there is a plt.arrow() function available. 

 he arrows it creates are SVG (scalable vector graphics)objects that will be subject to the varying aspect 

ratio of your plots, and the result is rarely what the user intended. 

 The arrow style is controlled through the arrowprops dictionary, which has numerous options available. 

 

Three-Dimensional Plotting in Matplotlib 
We enable three-dimensional plots by importing the mplot3d toolkit, included with the main Matplotlib installation. 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
fig = plt.figure() 
ax = plt.axes(projection='3d') 

 
With this 3D axes enabled, we can now plot a variety 

of three-dimensional plot types. 

 
 

Three-Dimensional Points and Lines 

The most basic three-dimensional plot is a line or scatter plot created from sets of (x, y, z) triples. 

In analogy with the more common two-dimensional plots discussed earlier, we can create these using the ax.plot3D 
and ax.scatter3D functions 

 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
ax = plt.axes(projection='3d') 
# Data for a three-dimensional line 
zline = np.linspace(0, 15, 1000) 
xline = np.sin(zline) 
yline = np.cos(zline) 
ax.plot3D(xline, yline, zline, 'gray') 
# Data for three-dimensional scattered points 
zdata = 15 * np.random.random(100) 
xdata = np.sin(zdata) + 0.1 * np.random.randn(100) 
ydata = np.cos(zdata) + 0.1 * np.random.randn(100) 
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ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens'); 
plt.show() 

 
Notice that by default, the scatter points have their transparency adjusted to give a sense of depth on the page. 

 
Three-Dimensional Contour Plots 

 mplot3d contains tools to create three-dimensional relief plots using the same inputs. 

 Like two-dimensional ax.contour plots, ax.contour3D requires all the input data to be in the form of two- 

dimensional regular grids, with the Z data evaluated at each point. 

 Here we’ll show a three-dimensional contour diagram of a three dimensional sinusoidal function 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
def f(x, y): 

return np.sin(np.sqrt(x ** 2 + y ** 2)) 
x = np.linspace(-6, 6, 30) 
y = np.linspace(-6, 6, 30) 
X, Y = np.meshgrid(x, y) 
Z = f(X, Y) 
fig = plt.figure() 
ax = plt.axes(projection='3d') 
ax.contour3D(X, Y, Z, 50, cmap='binary') 
ax.set_xlabel('x') 
ax.set_ylabel('y') 
ax.set_zlabel('z') 
plt.show() 
Sometimes the default viewing angle is not optimal, in which case we can use the view_init method to set the 

elevation and azimuthal angles. 

ax.view_init(60, 35) 
fig 

 
Wire frames and Surface Plots 

 Two other types of three-dimensional plots that work on gridded data are wireframes and surface plots. 

 These take a grid of values and project it onto the specified threedimensional surface, and can make the 

resulting three-dimensional forms quite easy to visualize. 

 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
fig = plt.figure() 
ax = plt.axes(projection='3d') 
ax.plot_wireframe(X, Y, Z, color='black') 
ax.set_title('wireframe'); 
plt.show() 

 
 A surface plot is like a wireframe plot, but each face 

of the wireframe is a filled polygon. 
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 Adding a colormap to the filled polygons can aid perception of the topology of the surface being visualized 

 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
ax = plt.axes(projection='3d') 
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, 
cmap='viridis', edgecolor='none') 
ax.set_title('surface') 
plt.show() 

 
Surface Triangulations 

 For some applications, the evenly sampled grids required by 

the preceding routines are overly restrictive and 

inconvenient. 

 In these situations, the triangulation-based plots can be very useful. 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits import mplot3d 
theta = 2 * np.pi * np.random.random(1000) 
r = 6 * np.random.random(1000) 
x = np.ravel(r * np.sin(theta)) 
y = np.ravel(r * np.cos(theta)) 
z = f(x, y) 
ax = plt.axes(projection='3d') 
ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5) 

 
 
 

Geographic Data with Basemap 
 One common type of visualization in data science is that 

of geographic data. 

 Matplotlib’s main tool for this type of visualization is the Basemap toolkit, which is one of several 

Matplotlib toolkits that live under the mpl_toolkits namespace. 

 Basemap is a useful tool for Python users to have in their virtual toolbelts 

 Installation of Basemap. Once you have the Basemap toolkit installed and imported, geographic plots also 

require the PIL package in Python 2, or the pillow package 

in Python 3. 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.basemap import Basemap 
plt.figure(figsize=(8, 8)) 
m = Basemap(projection='ortho', resolution=None, 
lat_0=50, lon_0=-100) 
m.bluemarble(scale=0.5); 

 

 Matplotlib axes that understands spherical coordinates and 

allows us to easily over-plot data on the map 
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 We’ll use an etopo image (which shows topographical features both on land and under the ocean) as the 

map background 

Program to display particular area of the map with latitude and 

longitude lines 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.basemap import Basemap 
from itertools import chain 
fig = plt.figure(figsize=(8, 8)) 
m = Basemap(projection='lcc', resolution=None, 
width=8E6, height=8E6, 
lat_0=45, lon_0=-100,) 
m.etopo(scale=0.5, alpha=0.5) 
def draw_map(m, scale=0.2): 
# draw a shaded-relief image 

m.shadedrelief(scale=scale) 
# lats and longs are returned as a dictionary 
lats = m.drawparallels(np.linspace(-90, 90, 13)) 
lons = m.drawmeridians(np.linspace(-180, 180, 13)) 
# keys contain the plt.Line2D instances 
lat_lines = chain(*(tup[1][0] for tup in lats.items())) 
lon_lines = chain(*(tup[1][0] for tup in lons.items())) 
all_lines = chain(lat_lines, lon_lines) 
# cycle through these lines and set the desired style 
for line in all_lines: 

line.set(linestyle='-', alpha=0.3, color='r') 
 

Map Projections 

The Basemap package implements several dozen such projections, all referenced by a short format code. Here we’ll 

briefly demonstrate some of the more common ones. 

 Cylindrical projections 

 Pseudo-cylindrical projections 

 Perspective projections 

 Conic projections 

 

Cylindrical projection 

 The simplest of map projections are cylindrical projections, in which lines of constant latitude and longitude 

are mapped to horizontal and vertical lines, respectively. 

 This type of mapping represents equatorial regions quite well, but results in extreme distortions near the 

poles. 

 The spacing of latitude lines varies between different cylindrical projections, leading to different 

conservation properties, and different distortion near the poles. 

 Other cylindrical projections are the Mercator (projection='merc') and the cylindrical equal-area 

(projection='cea') projections. 

 The additional arguments to Basemap for this view specify the latitude (lat) and longitude (lon) of the 

lower-left corner (llcrnr) and upper-right corner (urcrnr) for the desired map, in units of degrees. 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.basemap import Basemap 
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fig = plt.figure(figsize=(8, 6), edgecolor='w') 
m = Basemap(projection='cyl', resolution=None, 
llcrnrlat=-90, urcrnrlat=90, 
llcrnrlon=-180, urcrnrlon=180, ) 
draw_map(m) 

 

Pseudo-cylindrical projections 

 Pseudo-cylindrical projections relax the requirement that meridians (lines of constant longitude) remain 

vertical; this can give better properties near the poles of the projection. 

 The Mollweide projection (projection='moll') is one common example of this, in which all meridians are 

elliptical arcs 

 It is constructed so as to 

 preserve area across the map: though there are 

distortions near the poles, the area of small 

patches reflects the true area. 

 Other pseudo-cylindrical projections are the 

sinusoidal (projection='sinu') and Robinson 

(projection='robin') projections. 

 The extra arguments to Basemap here refer to 

the central latitude (lat_0) and longitude 

(lon_0) for the desired map. 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.basemap import Basemap 
fig = plt.figure(figsize=(8, 6), edgecolor='w') 
m = Basemap(projection='moll', resolution=None, 
lat_0=0, lon_0=0) 
draw_map(m) 

 

Perspective projections 

 Perspective projections are constructed using a particular choice of perspective point, similar to if you 

photographed the Earth from a particular point in space (a point which, for some projections, technically lies 

within the Earth!). 
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 One common example is the orthographic projection (projection='ortho'), which shows one side of the globe 

as seen from a viewer at a very long distance. 

 Thus, it can show only half the globe at a time. 

 Other perspective-based projections include the 

gnomonic projection (projection='gnom') and 

stereographic projection (projection='stere'). 
 These are often the most useful for showing small 

portions of the map. 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.basemap import Basemap 
fig = plt.figure(figsize=(8, 8)) 
m = Basemap(projection='ortho', resolution=None, 
lat_0=50, lon_0=0) 

draw_map(m); 
 
 

Conic projections 

 A conic projection projects the map onto a single cone, which is then unrolled. 

 This can lead to very good local properties, but regions far from the focus point of the cone may become 

very distorted. 

 One example of this is the Lambert conformal conic projection (projection='lcc'). 

 It projects the map onto a cone arranged in such a way that two standard parallels (specified in Basemap by 

lat_1 and lat_2) have well-represented distances, with scale decreasing between them and increasing outside 

of them. 

 Other useful conic projections are the equidistant conic (projection='eqdc') and the Albers equal-area 

(projection='aea') projection 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.basemap import Basemap 
fig = plt.figure(figsize=(8, 8)) 
m = Basemap(projection='lcc', resolution=None, 
lon_0=0, lat_0=50, lat_1=45, lat_2=55, width=1.6E7, height=1.2E7) 
draw_map(m) 
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Drawing a Map Background 

The Basemap package contains a range of useful functions for drawing borders of physical features like continents, 

oceans, lakes, and rivers, as well as political boundaries such as countries and US states and counties. 

The following are some of the available drawing functions that you may wish to explore using IPython’s help 

features: 

 

• Physical boundaries and bodies of water 

drawcoastlines() - Draw continental coast lines 

drawlsmask() - Draw a mask between the land and sea, for use with projecting images on one or the other 

drawmapboundary() - Draw the map boundary, including the fill color for oceans 

drawrivers() - Draw rivers on the map 

fillcontinents() - Fill the continents with a given color; optionally fill lakes with another color 

 

• Political boundaries 

drawcountries() - Draw country boundaries 

drawstates() - Draw US state boundaries 

drawcounties() - Draw US county boundaries 

 

• Map features 

drawgreatcircle() - Draw a great circle between two points 

drawparallels() - Draw lines of constant latitude 

drawmeridians() - Draw lines of constant longitude 

drawmapscale() - Draw a linear scale on the map 

 

• Whole-globe images 

bluemarble() - Project NASA’s blue marble image onto the map 

shadedrelief() - Project a shaded relief image onto the map 

etopo() - Draw an etopo relief image onto the map 

warpimage() - Project a user-provided image onto the map 

 

Plotting Data on Maps 

 The Basemap toolkit is the ability to over-plot a variety of data onto a map background. 

 There are many map-specific functions available as methods of the Basemap instance. 

Some of these map-specific methods are: 

contour()/contourf() - Draw contour lines or filled contours 

imshow() - Draw an image 

pcolor()/pcolormesh() - Draw a pseudocolor plot for irregular/regular meshes 

plot() - Draw lines and/or markers 

scatter() - Draw points with markers 

quiver() - Draw vectors 

barbs() - Draw wind barbs 

drawgreatcircle() - Draw a great circle 
 

Visualization with Seaborn 
The main idea of Seaborn is that it provides high-level commands to create a variety of plot types useful for 

statistical data exploration, and even some statistical model fitting. 
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Histograms, KDE, and densities 

 In statistical data visualization, all you want is to plot 

histograms and joint distributions of variables. We have 

seen that this is relatively straightforward in Matplotlib 

 Rather than a histogram, we can get a smooth estimate of 

the distribution using a kernel density estimation, which 

Seaborn does with sns.kdeplot 

import pandas as pd 
import seaborn as sns 

data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 
2]], size=2000) 
data = pd.DataFrame(data, columns=['x', 'y']) 
for col in 'xy': 

sns.kdeplot(data[col], shade=True) 
 

 Histograms and KDE can be combined using distplot 

sns.distplot(data['x']) 
sns.distplot(data['y']); 

 

 If we pass the full two-dimensional dataset to kdeplot, we will get a 

two-dimensional visualization of the data. 

 We can see the joint distribution and the marginal distributions together using sns.jointplot. 

 

Pair plots 

When you generalize joint plots to datasets of larger dimensions, you end up with pair plots. This is very useful for 

exploring correlations between multidimensional data, when you’d like to plot all pairs of values against each other. 

 

We’ll demo this with the Iris dataset, which lists measurements of petals and sepals of three iris species: 

import seaborn as sns 
iris = sns.load_dataset("iris") 
sns.pairplot(iris, hue='species', size=2.5); 
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Faceted histograms 

 Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid makes this 

extremely simple. 

 We’ll take a look at some data that shows the amount that restaurant staff receive in tips based on various 

indicator data 
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Factor plots 

Factor plots can be useful for this kind of visualization as well. This allows you to view the distribution of a 

parameter within bins defined by any other parameter. 

Joint distributions 

Similar to the pair plot we saw earlier, we can use sns.jointplot to show the joint distribution between different 

datasets, along with the associated marginal distributions. 

Bar plots 

Time series can be plotted with sns.factorplot. 
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