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UNIT 1 

 

Time and Space Complexity 
 

Time complexity is a measure of how long an algorithm takes to run as a function of the size of the 

input. It is typically expressed using big O notation, which describes the upper bound on the growth of 

the time required by the algorithm. For example, an algorithm with a time complexity of O(n) takes 

longer to run as the input size (n) increases. 

 
There are different types of time complexities: 
 

O(1) or constant time: the algorithm takes the same amount of time to run regardless of the size 

of the input. 

 

O(log n) or logarithmic time: the algorithm's running time increases logarithmically with the size 

of the input. 

 

O(n) or linear time: the algorithm's running time increases linearly with the size of the input. 
 

O(n log n) or linear logarithmic time: the algorithm's running time increases linearly with the size 

of the input and logarithmically with the size of the input. 

 
O(n^2) or quadratic time: the algorithm's running time increases quadratically with the size of 

the input. 

 

O(2^n) or exponential time: the algorithm's running time increases exponentially with the size 

of the input. 

 

Space complexity, on the other hand, is a measure of how much memory an algorithm uses as a 

function of the size of the input. Like time complexity, it is typically expressed using big O notation. For 

example, an algorithm with a space complexity of O(n) uses more memory as the input size (n) 

increases. Space complexities are generally categorized as: 

 

O(1) or constant space: the algorithm uses the same amount of memory regardless of the size of 

the input. 

 

O(n) or linear space: the algorithm's memory usage increases linearly with the size of the input. 

 

O(n^2) or quadratic space: the algorithm's memory usage increases quadratically with the size 

of the input. 

 

O(2^n) or exponential space: the algorithm's memory usage increases exponentially with the 

 



 

Big O notation (O(f(n))) provides an upper bound on the growth of a function. It describes the 

worst-case scenario for the time or space complexity of an algorithm. For example, an algorithm 

with a time complexity of O(n^2) means that the running time of the algorithm is at most n^2, 

where n is the size of the input. 

 

Big Ω notation (Ω(f(n))) provides a lower bound on the growth of a function. It describes the 

best-case scenario for the time or space complexity of an algorithm. For example, an algorithm 

with a space complexity of Ω(n) means that the memory usage of the algorithm is at least n, 

where n is the size of the input. 

 

Big Θ notation (Θ(f(n))) provides a tight bound on the growth of a function. It describes the 

average-case scenario for the time or space complexity of an algorithm. For example, an 

algorithm with a time complexity of Θ(n log n) means that the running time of the algorithm is 

both O(n log n) and Ω(n log n), where n is the size of the input. 

 

It's important to note that the asymptotic notation only describes the behavior of the function for large 

values of n, and does not provide information about the exact behavior of the function for small values 

of n. Also, for some cases, the best, worst and average cases can be the same, in that case the notation 

will be simplified to O(f(n)) = Ω(f(n)) = Θ(f(n)) 

 

 
 

 
 

 

Additionally, these notations can be used to compare the efficiency of different algorithms, where a 

lower order of the function is considered more efficient. For example, an algorithm with a time 

complexity of O(n) is more efficient than an algorithm with a time complexity of O(n^2). 

 

It's also worth mentioning that asymptotic notation is not only limited to time and space complexity but 

can be used to express the behavior of any function, not just algorithms. 

 

There are three asymptotic notations that are used to represent the time complexity of an algorithm. 
 

They are: 
 

Input: Here our input is an integer array of size "n" and we have one integer "k" that we need 

to search for in that array. 

 

Output: If the element "k" is found in the array, then we have return 1, otherwise we have 

 

 

• for-loop to iterate with each element in the array 

for (int i = 0; i < n; ++i) 

 



{ 
 

• check if ith element is equal to "k" or not 
 

if (arr[i] == k) 
 

return 1; // return 1, if you find "k" 

} 
 

return 0; // return 0, if you didn't find "k" 
 

} 
 

 

If the input array is [1, 2, 3, 4, 5] and you want to find if "1" is present in the array or not, then 

the if-condition of the code will be executed 1 time and it will find that the element 1 is there in 

the array. So, the if-condition will take 1 second here. 

 

If the input array is [1, 2, 3, 4, 5] and you want to find if "3" is present in the array or not, then 

the if-condition of the code will be executed 3 times and it will find that the element 3 is there in 

the array. So, the if-condition will take 3 seconds here. 

 

If the input array is [1, 2, 3, 4, 5] and you want to find if "6" is present in the array or not, then 

the if-condition of the code will be executed 5 times and it will find that the element 6 is not 

there in the array and the algorithm will return 0 in this case. So, the if-condition will take 5 

seconds here. 

 

As we can see that for the same input array, we have different time for different values of "k". So, this 

can be divided into three cases: 

 

Best case: This is the lower bound on running time of an algorithm. We must know the case that 

causes the minimum number of operations to be executed. In the above example, our array was 

[1, 2, 3, 4, 5] and we are finding if "1" is present in the array or not. So here, after only one 

comparison, we will get that ddelement is present in the array. So, this is the best case of our 

algorithm. 

 
 

Average case: We calculate the running time for all possible inputs, sum all the calculated values 

and divide the sum by the total number of inputs. We must know (or predict) distribution of 

cases. 

 

Worst case: This is the upper bound on running time of an algorithm. We must know the case 

that causes the maximum number of operations to be executed. In our example, the worst case 

can be if the given array is [1, 2, 3, 4, 5] and we try to find if element "6" is present in the array 

or not. Here, the if-condition of our loop will be executed 5 times and then the algorithm will 

give "0" as output. 



 

So, we learned about the best, average, and worst case of an algorithm. Now, let's get back to the 

asymptotic notation where we saw that we use three asymptotic notation to represent the complexity 

of an algorithm i.e. Θ Notation (theta), Ω Notation, Big O Notation. 

 

NOTE: In the asymptotic analysis, we generally deal with large input size. 
 

Θ Notation (theta) 
 

The Θ Notation is used to find the average bound of an algorithm i.e. it defines an upper bound and a 

lower bound, and your algorithm will lie in between these levels. So, if a function is g(n), then the theta 

representation is shown as Θ(g(n)) and the relation is shown as: 

 

Θ(g(n)) = { f(n): there exist positive constants c1, c2 and n0 

 

 

Ω Notation 
 

The Ω notation denotes the lower bound of an algorithm i.e. the time taken by the algorithm can't be 

lower than this. In other words, this is the fastest time in which the algorithm will return a result. 

 

Its the time taken by the algorithm when provided with its best-case input. So, if a function is g(n), then 

the omega representation is shown as Ω(g(n)) and the relation is shown as: 

 

Ω(g(n)) = { f(n): there exist positive constants c and n0 

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0 } 

The above expression can be read as omega of g(n) is defined as set of all the functions f(n) for which 

there exist some constants c and n0 such that c*g(n) is less than or equal to f(n), for all n greater than or 

equal to n0. 

 

if f(n) = 2n² + 3n + 1 
 

and g(n) = n² 
 

then for c = 2 and n0 = 1, we can say that f(n) = Ω(n²) 



 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

Big O Notation 
 

The Big O notation defines the upper bound of any algorithm i.e. you algorithm can't take more time 

than this time. In other words, we can say that the big O notation denotes the maximum time taken by 

an algorithm or the worst-case time complexity of an algorithm. So, big O notation is the most used 

notation for the time complexity of an algorithm. So, if a function is g(n), then the big O representation 

of g(n) is shown as O(g(n)) and the relation is shown as: 

 

O(g(n)) = { f(n): there exist positive constants c and n0 

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 } 

The above expression can be read as Big O of g(n) is defined as a set of functions f(n) for which there 

exist some constants c and n0 such that f(n) is greater than or equal to 0 and f(n) is smaller than or equal 

to c*g(n) for all n greater than or equal to n0. 

 

if f(n) = 2n² + 3n + 1 
 

and g(n) = n² 
 



then for c = 6 and n0 = 1, we can say that f(n) = O(n² 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Big O notation example of Algorithms 
 

Big O notation is the most used notation to express the time complexity of an algorithm. In this section 

of the blog, we will find the big O notation of various algorithms. 

 

Example 1: Finding the sum of the first n numbers. 
 

In this example, we have to find the sum of first n numbers. For example, if n = 4, then our output 

should be 1 + 2 + 3 + 4 = 10. If n = 5, then the ouput should be 1 + 2 + 3 + 4 + 5 = 15. Let's try various 

solutions to this code and try to compare all those codes. 

 

O(1) solution 
 



• function taking input "n" int 

findSum(int n) 

{ 
 

return n * (n+1) / 2; // this will take some constant time c1 
 
} 
 

In the above code, there is only one statement and we know that a statement takes constant time for its 

execution. The basic idea is that if the statement is taking constant time, then it will take the same 

amount of time for all the input size and we denote this as O(1) . 

 

O(n) solution 
 

In this solution, we will run a loop from 1 to n and we will add these values to a variable named "sum". 

 

• function taking input "n" int 

findSum(int n) 

{ 
 

int sum = 0; // -----------------> it takes some constant time "c1" 
 

for(int i = 1; i <= n; ++i) // --> here the comparision and increment will take place n times(c2*n) and the 

creation of i takes place with some constant time 

 

sum = sum + i; // -----------> this statement will be executed n times i.e. c3*n 

 

 

return sum; // ------------------> it takes some constant time "c4" 
 

} 
 

/* 
 

• Total time taken = time taken by all the statments to execute 
 
• here in our example we have 3 constant time taking statements i.e. "sum = 0", "i = 0", and "return 

sum", so we can add all the constatnts and replacce with some new constant "c" 

 
• apart from this, we have two statements running n-times i.e. "i < n(in real n+1)" and "sum = sum + i" 

i.e. c2*n + c3*n = c0*n 

 
• Total time taken = c0*n + c 
 



*/ 
 

The big O notation of the above code is O(c0*n) + O(c), where c and c0 are constants. So, the overall 

time complexity can be written as O(n) . 

 

O(n²) solution 
 

In this solution, we will increment the value of sum variable "i" times i.e. for i = 1, the sum variable will 

be incremented once i.e. sum = 1. For i = 2, the sum variable will be incremented twice. So, let's see the 

solution. 

 

• function taking input "n" int 

findSum(int n) 

{ 
 

int sum = 0; // ---------------------> constant time 

for(int i = 1; i <= n; ++i) 

for(int j = 1; j <= i; ++j) 
 

sum++; // -------------------> it will run [n * (n + 1) / 2] 

return sum; // ----------------------> constant time 

} 
 
/* 
 
* Total time taken = time taken by all the statments to execute 
 
* the statement that is being executed most of the time is "sum++" i.e. n * (n + 1) / 2 
 

• So, total complexity will be: c1*n² + c2*n + c3 [c1 is for the constant terms of n², c2 is for the constant 

terms of n, and c3 is for rest of the constant time] 

 

*/ 
 

The big O notation of the above algorithm is O(c1*n²) +O( c2*n) + O(c3). Since we take the higher order 

of growth in big O. So, our expression will be reduced to O(n²) . 

So, until now, we saw 3 solutions for the same problem. Now, which algorithm will you prefer to use 

when you are finding the sum of first "n" numbers? If your answer is O(1) solution, then we have one 

bonus section for you at the end of this blog. We would prefer the O(1) solution because the time taken 

by the algorithm will be constant irrespective of the input size. 

 

 



Recurrence Relation 
 

A recurrence relation is a mathematical equation that describes the relation between the input size and 

the running time of a recursive algorithm. It expresses the running time of a problem in terms of the 

running time of smaller instances of the same problem. 

 

A recurrence relation typically has the form T(n) = aT(n/b) + f(n) where: 
 

T(n) is the running time of the algorithm on an input of size n a 

is the number of recursive calls made by the algorithm 

b is the size of the input passed to each recursive call 
 

f(n) is the time required to perform any non-recursive operations 
 

The recurrence relation can be used to determine the time complexity of the algorithm using techniques 

such as the Master Theorem or Substitution Method. 

 

For example, let's consider the problem of computing the nth Fibonacci number. A simple recursive 

algorithm for solving this problem is as follows: 

 

 

 
 

 

Fibonacci(n) 
 

if n <= 1 
 

return n 
 

else 
 

return Fibonacci(n-1) + Fibonacci(n-2) 
 

The recurrence relation for this algorithm is T(n) = T(n-1) + T(n-2) + O(1), which describes the running 

time of the algorithm in terms of the running time of the two smaller instances of the problem with 

input sizes n-1 and n-2. Using the Master Theorem, it can be shown that the time complexity of this 

algorithm is O(2^n) which is very inefficient for large input sizes. 

 

 

Searching 
 

Searching is the process of fetching a specific element in a collection of elements. The collection can be 

an array or a linked list. If you find the element in the list, the process is considered successful, and it 

returns the location of that element. 

 

https://www.simplilearn.com/tutorials/data-structure-tutorial/linked-list-in-data-structure


Two prominent search strategies are extensively used to find a specific item on a list. However, the 

algorithm chosen is determined by the list's organization. 

 

• Linear Search 
 

• Binary Search 
 

• Interpolation search 
 
 

Linear Search 
 

Linear search, often known as sequential search, is the most basic search technique. In this type of 

search, we go through the entire list and try to fetch a match for a single element. If we find a match, 

then the address of the matching target element is returned. On the other hand, if the element is not 

found, then it returns a NULL value. 

 

Following is a step-by-step approach employed to perform Linear Search Algorithm. 

 
 

 

 
 

 

 
 

 

 

 
 

The procedures for implementing linear search are as follows: 
 

Step 1: First, read the search element (Target element) in the array. 
 

Step 2: In the second step compare the search element with the first element in the array. 
 

Step 3: If both are matched, display "Target element is found" and terminate the Linear Search function. 

 

Step 4: If both are not matched, compare the search element with the next element in the array. Step 5: 

In this step, repeat steps 3 and 4 until the search (Target) element is compared with the last element of 

the array. 

https://www.simplilearn.com/binary-search-algorithm-article


 

Step 6 - If the last element in the list does not match, the Linear Search Function will be terminated, and 

the message "Element is not found" will be displayed. 

 

Algorithm and Pseudocode of Linear Search Algorithm 

Algorithm of the Linear Search Algorithm 

 

 

Linear Search ( Array Arr, Value a ) // Arr is the name of the array, and a is the searched element. 

Step 1: Set i to 0 // i is the index of an array which starts from 0 

 

Step 2: ifi > n then go to step 7 // n is the number of elements in array 
 

Step 3: if Arr[i] = a then go to step 6 
 

Step 4: Set i to i + 1 
 

Step 5: Goto step 2 
 

Step 6: Print element a found at index i and go to step 8 
 

Step 7: Print element not found 
 

Step 8: Exit 
 

Pseudocode of Linear Search Algorithm 
 

 

Start 
 

linear_search ( Array , value) 
 

 
 
 

 

 

 
 

For each element in the array 
 

If (searched element == value) 
 

Return's the searched element location 
 

end if 
 

end for 



 

end 
 

Example of Linear Search Algorithm 
 

Consider an array of size 7 with elements 13, 9, 21, 15, 39, 19, and 27 that starts with 0 and ends 
 

with size minus one, 6. 
 

Search element = 39 

 
 

 
 

 

 

 
 

 

 

Step 1: The searched element 39 is compared to the first element of an array, which is 13. 

 
 
 

 

 

 
 

 

The match is not found, you now move on to the next element and try to implement a comparison. 
 

Step 2: Now, search element 39 is compared to the second element of an array, 9. 

 
 

 



 
 

 

 

 
 

Step 3: Now, search element 39 is compared with the third element, which is 21. 

 
 

 

 
 

 

 

 
 

Again, both the elements are not matching, you move onto the next following element. 
 

Step 4; Next, search element 39 is compared with the fourth element, which is 15. 

 
 
 

 

 
 

Step 5: Next, search element 39 is compared with the fifth element 39. 

 
 

 

 

 
 

 

 



 

A perfect match is found, display the element found at location 4. 
 

The Complexity of Linear Search Algorithm 
 

Three different complexities faced while performing Linear Search Algorithm, they are mentioned as 

follows. 

 

• Best Case 
 

• Worst Case 
 

• Average Case 
 
Best Case Complexity 
 

The element being searched could be found in the first position. In this 

case, the search ends with a single successful comparison. 

 
Thus, in the best-case scenario, the linear search algorithm performs O(1) operations. 

 
Worst Case Complexity 
 

The element being searched may be at the last position in the array or not at all. In 

the first case, the search succeeds in ‘n’ comparisons. 

 
In the next case, the search fails after ‘n’ comparisons. 

 
Thus, in the worst-case scenario, the linear search algorithm performs O(n) operations. 

 
Average Case Complexity 
 
When the element to be searched is in the middle of the array, the average case of the Linear Search 

Algorithm is O(n). 

Space Complexity of Linear Search Algorithm 
 
The linear search algorithm takes up no extra space; its space complexity is O(n) for an array of n 

elements. 

Application of Linear Search Algorithm 
 
The linear search algorithm has the following applications: 
 

Linear search can be applied to both single-dimensional and multi-dimensional arrays. 
 

Linear search is easy to implement and effective when the array contains only a few elements. 

 

https://www.simplilearn.com/tutorials/data-structure-tutorial/time-and-space-complexity


Linear Search is also efficient when the search is performed to fetch a single search in an 

unordered-List. 

Code Implementation of Linear Search Algorithm 
 

 

#include<stdio.h> 
 

#include<stdlib.h> 
 

#include<conio.h> 
 

int main() 
 

{ 
 

int array[50],i,target,num; 
 
 

 

 

printf("How many elements do you want in the array"); 
 

scanf("%d",&num); 
 

printf("Enter array elements:"); 
 

for(i=0;i<num;++i) 
 

scanf("%d",&array[i]); 
 

printf("Enter element to search:"); 
 

scanf("%d",&target); 
 

for(i=0;i<num;++i) 
 

if(array[i]==target) 
 

break; 
 

if(i<num) 
 

printf("Target element found at location %d",i); 
 

else 
 

printf("Target element not found in an array"); 
 

return 0; 



 

} 
 

 

Binary Search 
 

Binary search is the search technique that works efficiently on sorted lists. Hence, to search an element 

into some list using the binary search technique, we must ensure that the list is sorted. Binary search 

follows the divide and conquer approach in which the list is divided into two halves, and the item is 

compared with the middle element of the list. If the match is found then, the location of the middle 

element is returned. Otherwise, we search into either of the halves depending upon the result produced 

through the match 

 

NOTE: Binary search can be implemented on sorted array elements. If the list elements are not arranged 

in a sorted manner, we have first to sort them. 

 

Algorithm 
 

• Binary_Search(a, lower_bound, upper_bound, val) // 'a' is the given array, 'lower_bound' is t he 

index of the first array element, 'upper_bound' is the index of the last array element, 'val' is the 

value to search 

 
• Step 1: set beg = lower_bound, end = upper_bound, pos = - 1 

 
• Step 2: repeat steps 3 and 4 while beg <=end 

 
• Step 3: set mid = (beg + end)/2 

 
• Step 4: if a[mid] = val 

 
• set pos = mid 

 
• print pos 

 
• go to step 6 

 
• else if a[mid] > val 

 
• set end = mid - 1 

 
• else 

 
• set beg = mid + 1 

 
• [end of if] 

 
• [end of loop] 



 
• Step 5: if pos = -1 

 
• print "value is not present in the array" 

 
• [end of if] 

 
• Step 6: exit 

 

Procedure binary_search 
 

A ← sorted array 
 

n ← size of array 
 

x ← value to be searched 
 

Set lowerBound = 1 
 

Set upperBound = n 
 

while x not found 
 

if upperBound < lowerBound 
 

EXIT: x does not exists. 
 

set midPoint = lowerBound + ( upperBound - lowerBound ) / 2 if 

A[midPoint] < x 

 

set lowerBound = midPoint + 1 
 

if A[midPoint] > x 
 

set upperBound = midPoint - 1 
 

if A[midPoint] = x 
 

EXIT: x found at location midPoint 
 

end while 
 

end procedure 
 

Working of Binary search 
 

To understand the working of the Binary search algorithm, let's take a sorted array. It will be easy to 

understand the working of Binary search with an example. 

 



There are two methods to implement the binary search algorithm - 
 

• Iterative method o 

Recursive method 
 

The recursive method of binary search follows the divide and conquer approach. 
 

Let the elements of array are - 

 
 

 
 

Let the element to search is, K = 56 
 

We have to use the below formula to calculate the mid of the array - 
 

• mid = (beg + end)/2 
 
So, in the given array - 
 

beg = 0 
 

end = 8 
 

mid = (0 + 8)/2 = 4. So, 4 is the mid of the array. 
 

 

Now, the element to search is found. So algorithm will return the index of the element matched. 

Binary Search complexity 

 

Now, let's see the time complexity of Binary search in the best case, average case, and worst case. 
 

We will also see the space complexity of Binary search. 
 

1. Time Complexity 
 

 

Case Time Complexity 

  

Best Case O(1) 

  

Average Case O(logn) 

  

Worst Case O(logn) 
 

• Best Case Complexity - In Binary search, best case occurs when the element to search is found 

in first comparison, i.e., when the first middle element itself is the element to be 



searched. The best-case time complexity of Binary search is O(1). 
 

• Average Case Complexity - The average case time complexity of Binary search is O(logn). 
 

• Worst Case Complexity - In Binary search, the worst case occurs, when we have to keep 

reducing the search space till it has only one element. The worst-case time complexity of 

Binary search is O(logn). 
 

• Space Complexity 
 

 

Space Complexity O(1) 
 

• The space complexity of binary search is O(1). 
 

 

Implementation of Binary Search 
 

Program: Write a program to implement Binary search in C language. 
 

• #include <stdio.h> 
 

• int binarySearch(int a[], int beg, int end, int val) 
 

• { 
 

• int mid; 
 

• if(end >= beg) 
 

• {    mid = (beg + end)/2; 
 

• /* if the item to be searched is present at middle */ 
 

• if(a[mid] == val) 
 

• { 
 

• return mid+1; 
 

• } 
 

• /* if the item to be searched is smaller than middle, then it can only be in left subarra 
 

y */ 
 

• else if(a[mid] < val) 
 



• { 
 

• return binarySearch(a, mid+1, end, val); 
 

• } 
 

• /* if the item to be searched is greater than middle, then it can only be in right subarr 
 

ay */ 
 

• else 
 

• { 
 

• return binarySearch(a, beg, mid-1, val); 
 

• } 
 

• } 
 

• return -1; 
 

• } 
 

• int main() { 
 

• int a[] = {11, 14, 25, 30, 40, 41, 52, 57, 70}; // given array 
 

• int val = 40; // value to be searched 
 

• int n = sizeof(a) / sizeof(a[0]); // size of array 
 

• int res = binarySearch(a, 0, n-1, val); // Store result 
 

• printf("The elements of the array are - "); 
 

• for (int i = 0; i < n; i++) 
 

• printf("%d ", a[i]); 
 

• printf("\nElement to be searched is - %d", val); 
 

• if (res == -1) 
 

• printf("\nElement is not present in the array"); 
 

• else 
 



• printf("\nElement is present at %d position of array", res); 
 

• return 0; 
 

• } 
 

Output 

 
 

 

 
 

 

Interpolation Search 
 

Interpolation search is an improved variant of binary search. This search algorithm works on the probing 

position of the required value. For this algorithm to work properly, the data collection should be in a 

sorted form and equally distributed. 

 

Binary search has a huge advantage of time complexity over linear search. Linear search has worst-case 

complexity of Ο(n) whereas binary search has Ο(log n).There are cases where the location of target data 

may be known in advance. For example, in case of a telephone directory, if we want to search the 

telephone number of Morphius. Here, linear search and even binary search will seem slow as we can 

directly jump to memory space where the names start from 'M' are stored. 

 

Position Probing in Interpolation Search 
 

Interpolation search finds a particular item by computing the probe position. Initially, the probe position 

is the position of the middle most item of the collection. 

 
 

 
 

 

 
 

 

If a match occurs, then the index of the item is returned. To split the list into two parts, we use the 

following method − 

 

mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo]) 



 

where − 
 

A = list 
 

Lo  = Lowest index of the list 
 

Hi  = Highest index of the list 
 

A[n] = Value stored at index n in the list 
 

If the middle item is greater than the item, then the probe position is again calculated in the sub-array 

to the right of the middle item. Otherwise, the item is searched in the subarray to the left of the middle 

item. This process continues on the sub-array as well until the size of subarray reduces to zero. 

 

Runtime complexity of interpolation search algorithm is Ο(log (log n)) as compared to Ο(log n) of 
 

BST in favorable situations. 
 

Algorithm 
 

As it is an improvisation of the existing BST algorithm, we are mentioning the steps to search the 
 

'target' data value index, using position probing − 
 

Step 1 − Start searching data from middle of the list. 
 

Step 2 − If it is a match, return the index of the item, and exit. 
 

Step 3 − If it is not a match, probe position. 
 

Step 4 − Divide the list using probing formula and find the new midle. 
 

Step 5 − If data is greater than middle, search in higher sub-list. 
 

Step 6 − If data is smaller than middle, search in lower sub-list. 
 

Step 7 − Repeat until match. 
 

 

Pseudocode 
A → Array list 
N → Size of A 
X → Target Value 
 

Procedure Interpolation_Search() 
 

Set Lo → 0 

Set Mid → -1 



Set Hi → N-1 
 

While X does not match 
 

if Lo equals to Hi OR A[Lo] equals to A[Hi] 
EXIT: Failure, Target not found 

end if 
 

Set Mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo]) 
 

if A[Mid] = X 
EXIT: Success, Target found at Mid 

else 
if A[Mid] < X 

Set Lo to Mid+1 
else if A[Mid] > X 

Set Hi to Mid-1 
end if 

end if 
End While 

 

End Procedure 
 

Implementation of interpolation in C 
 

#include<stdio.h> 
 

#define MAX 10 
 

• array of items on which linear search will be conducted. int 

list[MAX] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 }; int find(int 

data) { 

 
int lo = 0; 

 
int hi = MAX - 1; int 

mid = -1; 

 
int comparisons = 1; int 

index = -1; while(lo <= 

hi) { 

 
printf("\nComparison %d \n" , comparisons ) ; 

printf("lo : %d, list[%d] = %d\n", lo, lo, list[lo]); 

printf("hi : %d, list[%d] = %d\n", hi, hi, list[hi]); 

 

comparisons++; 



 

// probe the mid point 
 

mid = lo + (((double)(hi - lo) / (list[hi] - list[lo])) * (data - list[lo])); 

printf("mid = %d\n",mid); 
 

• data found if(list[mid] 

== data) { 

 

index = mid; 

break; 

} else { 
 

if(list[mid] < data) { 
 

• if data is larger, data is in upper half lo 

= mid + 1; 

 
} else { 

 
• if data is smaller, data is in lower half hi 

= mid - 1; 

 

} 
 

} 
 

} 
 

printf("\nTotal comparisons made: %d", --comparisons); 

return index; 

 

} 
 

int main() { 
 

//find location of 33 
 

int location = find(33); 
 

• if element was found 

if(location != -1) 

 
printf("\nElement found at location: %d" ,(location+1)); 

else 

printf("Element not found."); 

return 0; 



 

} 
 

If we compile and run the above program, it will produce the following result − 
 

Output 
 

Comparison 1 
 

lo : 0, list[0] = 10 
 

hi : 9, list[9] = 44 
 

mid = 6 
 

Total comparisons made: 1 
 

Element found at location: 7 
 
 

Time Complexity 
 

Bestcase-O(1) 
 

The best-case occurs when the target is found exactly as the first expected position computed 

using the formula. As we only perform one comparison, the time complexity is O(1). 

 

Worst-case-O(n) 
 

The worst case occurs when the given data set is exponentially distributed. 
 

Averagecase-O(log(log(n))) 
 

If the data set is sorted and uniformly distributed, then it takes O(log(log(n))) time as on an 

average (log(log(n))) comparisons are made. 

Space Complexity 
 

O(1) as no extra space is required. 
 

Pattern Search 
 

Pattern Searching algorithms are used to find a pattern or substring from another bigger string. There 

are different algorithms. The main goal to design these type of algorithms to reduce the time 

complexity. The traditional approach may take lots of time to complete the pattern searching task for a 

longer text. 

 

Here we will see different algorithms to get a better performance of pattern matching. 
 



In this Section We are going to cover. 
 

Aho-Corasick Algorithm 

Anagram Pattern Search 

Bad Character Heuristic 

Boyer Moore Algorithm 

 

Efficient Construction of Finite Automata 

kasai’s Algorithm 
Knuth-Morris-Pratt Algorithm 

Manacher’s Algorithm 

 

Naive Pattern Searching 

Rabin-Karp Algorithm Suffix 

Array 

 

Trie of all Suffixes Z 

Algorithm 

 

Naïve pattern searching is the simplest method among other pattern searching algorithms. It checks for 

all character of the main string to the pattern. This algorithm is helpful for smaller texts. It does not 

need any pre-processing phases. We can find substring by checking once for the string. It also does not 

occupy extra space to perform the operation. 

 

The time complexity of Naïve Pattern Search method is O(m*n). The m is the size of pattern and n is the 

size of the main string. 

 

Input and Output 
 

Input: 
 

Main String: “ABAAABCDBBABCDDEBCABC”, pattern: “ABC” 
 

Output: 
 

Pattern found at position: 4 
 

Pattern found at position: 10 
 

Pattern found at position: 18 
 

Algorithm 
 

naive_algorithm(pattern, text) 
 

Input − The text and the pattern 
 



Output − locations, where the pattern is present in the text Start 
 

pat_len := pattern Size 

str_len := string size 
 

for i := 0 to (str_len - pat_len), do 
 

for j := 0 to pat_len, do 
 

if text[i+j] ≠ pattern[j], then 
 

break 
 

if j == patLen, then 
 

display the position i, as there pattern found 
 

End 
 

Implementation in C 
 

#include <stdio.h> 
 

#include <string.h> 
 

int main (){ 
 

char txt[] = "tutorialsPointisthebestplatformforprogrammers"; 
 

char pat[] = "a"; 
 

int M = strlen (pat); 
 

int N = strlen (txt); 
 

for (int i = 0; i <= N - M; i++){ 
 

int j; 
 

for (j = 0; j < M; j++) 
 

if (txt[i + j] != pat[j]) 
 

break; 
 

if (j == M) 
 

printf ("Pattern matches at index %d 
 



", i); 
 

} 
 

return 0; 
 

} 
 

Output 
 

Pattern matches at 6 
 

Pattern matches at 25 
 

Pattern matches at 39 
 

 

Rabin-Karp matching pattern 
 

Rabin-Karp is another pattern searching algorithm. It is the string matching algorithm that was proposed 

by Rabin and Karp to find the pattern in a more efficient way. Like the Naive Algorithm, it also checks 

the pattern by moving the window one by one, but without checking all characters for all cases, it finds 

the hash value. When the hash value is matched, then only it proceeds to check each character. In this 

way, there is only one comparison per text subsequence making it a more efficient algorithm for pattern 

searching. 

 

Preprocessing time- O(m) 
 

The time complexity of the Rabin-Karp Algorithm is O(m+n), but for the worst case, it is O(mn). 

Algorithm 

 

rabinkarp_algo(text, pattern, prime) 
 

Input − The main text and the pattern. Another prime number of find hash location 

Output − locations, where the pattern is found 
 

Start 
 

pat_len := pattern Length 
 

str_len := string Length 
 

patHash := 0 and strHash := 0, h := 1 
 

maxChar := total number of characters in character set for 

index i of all character in the pattern, do 

 

h := (h*maxChar) mod prime 



 

for all character index i of pattern, do 
 

patHash := (maxChar*patHash + pattern[i]) mod prime 

strHash := (maxChar*strHash + text[i]) mod prime 
 

for i := 0 to (str_len - pat_len), do 
 

if patHash = strHash, then 
 

for charIndex := 0 to pat_len -1, do 
 

if text[i+charIndex] ≠ pattern[charIndex], then 
 

break 
 

if charIndex = pat_len, then 
 

print the location i as pattern found at i position. 
 

if i < (str_len - pat_len), then 
 

strHash := (maxChar*(strHash – text[i]*h)+text[i+patLen]) mod prime, then 
 

if strHash < 0, then 
 

strHash := strHash + prime 
 

End 
 

Implementation In C 
 

#include<stdio.h> 
 

#include<string.h> 
 

int main (){ 
 

char txt[80], pat[80]; 
 

int q; 
 

printf("Enterthecontainerstring "); 
scanf ("%s", &txt); 
printf("Enterthepatterntobesearched "); 
scanf ("%s", &pat); 
int d = 256; 

printf("Enteraprimenumber "); 
scanf ("%d", &q); 



 

int M = strlen (pat); 
 

int N = strlen (txt); 
 

int i, j; 
 

int p = 0; 
 

int t = 0; 
 

int h = 1; 
 

for (i = 0; i < M - 1; i++) 
 

h = (h * d) % q; 
 

for (i = 0; i < M; i++){ 
 

p = (d * p + pat[i]) % q; 
 
t = (d * t + txt[i]) % q; 

 

} 
 

for (i = 0; i <= N - M; i++){ 
 

if (p == t){ 
 

for (j = 0; j < M; j++){ 
 

if (txt[i + j] != pat[j]) 
 

break; 
 

} 
 

if (j == M) 
 

printf("Patternfoundatindex%d ", i); 
 

} 
 

if (i < N - M){ 
 

t = (d * (t - txt[i] * h) + txt[i + M]) % q; 
 

if (t < 0) 
 



t = (t + q); 
 

} 
 

} 
 

return 0; 
 

} 
 

Output 
 

Enter the container string 
 

tutorialspointisthebestprogrammingwebsite 
 

Enter the pattern to be searched 
 

p 
 

Enter a prime number 
 

3 
 

Pattern found at index 8 
 

Pattern found at index 21 
 

n this problem, we are given two strings a text and a pattern. Our task is to create a program for KMP 

algorithm for pattern search, it will find all the occurrences of pattern in text string. Here, we have to 

find all the occurrences of patterns in the text. 

 

Let’s take an example to understand the problem, 

Input 

 

text = “xyztrwqxyzfg” pattern = “xyz” 
 

Output 
 

Found at index 0 
 

Found at index 7 
 

Here, we will discuss the solution to the problem using KMP (Knuth Morris Pratt) pattern searching 

algorithm, it will use a preprocessing string of the pattern which will be used for matching in the text. 

And help’s in processing or finding pattern matches in the case where matching characters are followed 

by the character of the string that does not match the pattern. 

 



We will preprocess the pattern wand to create an array that contains the proper prefix and suffix from 

the pattern that will help in finding the mismatch patterns. Program for KMP Algorithm for Pattern 

Searching 

 

• C Program for KMP Algorithm for Pattern Searching 

Example 

 
#include<iostream> 
 
#include<string.h> 
 

using namespace std; 
 

void prefixSuffixArray(char* pat, int M, int* pps) { 
 

int length = 0; 
 

pps[0] = 0; 
 

int i = 1; 
 

while (i < M) { 
 

if (pat[i] == pat[length]) { 
 

length++; 
 

pps[i] = length; 
 

i++; 
 

} else { 
 

if (length != 0) 
 

length = pps[length - 1]; 
 

else { 
 

pps[i] = 0; 
 

i++; 
 

} 
 

} 
 

} 
 



} 
 

void KMPAlgorithm(char* text, char* pattern) { 
 

int M = strlen(pattern); 
 

int N = strlen(text); 
 

int pps[M]; 
 

prefixSuffixArray(pattern, M, pps); 
 

int i = 0; 
 

int j = 0; 
 

while (i < N) { 
 

if (pattern[j] == text[i]) { 
 

j++; 
 

i++; 
 

} 
 

if (j == M) 
 

{ 
 

printf("Foundpatternatindex%d", i - j); 
 

j = pps[j - 1]; 
 

} 
 

else if (i < N && pattern[j] != text[i]) { 
 

if (j != 0) 
 

j = pps[j - 1]; 
 

else 
 

i = i + 1; 
 

} 
 

} 



 

} 
 

int main() { 
 

char text[] = "xyztrwqxyzfg"; 
 

char pattern[] = "xyz"; 
 

printf("Thepatternisfoundinthetextatthefollowingindex : "); 
 

KMPAlgorithm(text, pattern); 
 

return 0; 
 

} 
 

Output 
 

The pattern is found in the text at the following index − 
 

Found pattern at index 0 
 

Found pattern at index 7 
 
 

Sorting : Insertion sort 
 

 

Insertion sort works similar to the sorting of playing cards in hands. It is assumed that the first card is 

already sorted in the card game, and then we select an unsorted card. If the selected unsorted card is 

greater than the first card, it will be placed at the right side; otherwise, it will be placed at the left 

side. Similarly, all unsorted cards are taken and put in their exact place. 

 

The same approach is applied in insertion sort. The idea behind the insertion sort is that first take 

one element, iterate it through the sorted array. Although it is simple to use, it is not appropriate for 

large data sets as the time complexity of insertion sort in the average case and worst case is O(n2), 

where n is the number of items. Insertion sort is less efficient than the other sorting algorithms like 

heap sort, quick sort, merge sort, etc. 
 

Algorithm 
 

The simple steps of achieving the insertion sort are listed as follows - 
 

Step 1 - If the element is the first element, assume that it is already sorted. Return 1. 
 

Step2 - Pick the next element, and store it separately in a key. 
 



Step3 - Now, compare the key with all elements in the sorted array. 
 

Step 4 - If the element in the sorted array is smaller than the current element, then move to the next 

element. Else, shift greater elements in the array towards the right. Step 5 - Insert the value. 

 

Step 6 - Repeat until the array is sorted. 
 

Working of Insertion sort Algorithm 
 

Now, let's see the working of the insertion sort Algorithm. 
 

To understand the working of the insertion sort algorithm, let's take an unsorted array. It will be 

easier to understand the insertion sort via an example. Let the elements of array are - 

 
 
 

 

 

Initially, the first two elements are compared in insertion sort. 

 
 
 

 

Here, 31 is greater than 12. That means both elements are already in ascending order. So, for now, 

12 is stored in a sorted sub-array. 

 

 

Now, move to the next two elements and compare them. 

 
 

 
 

 

 
 

 

Here, 25 is smaller than 31. So, 31 is not at correct position. Now, swap 31 with 25. Along with 

swapping, insertion sort will also check it with all elements in the sorted array. 

 

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12. Hence, the sorted 

array remains sorted after swapping. 



 
 
 

 

Now, two elements in the sorted array are 12 and 25. Move forward to the next elements that are 31 

and 8. 

 
 

 

 
 

 

 

Both 31 and 8 are not sorted. So, swap them. 

 
 

 

 
 

After swapping, elements 25 and 8 are unsorted. 

 
 
 

 

So, swap them. 

 
 
 

 

Now, elements 12 and 8 are unsorted. 

 
 

 
 

So, swap them too. 

 



 
 

 

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items that are 31 and 32. 

 
 

 

Hence, they are already sorted. Now, the sorted array includes 8, 12, 25 and 31. 

 
 
 

 

Move to the next elements that are 32 and 17. 
 
 

17 is smaller than 32. So, swap them. 

 
 

 

 
 

 

 

Swapping makes 31 and 17 unsorted. So, swap them too. 

 
 
 

 

 

 
 

 

Now, swapping makes 25 and 17 unsorted. So, perform swapping again. 

 
 
 

 



Now, the array is completely sorted. 
 

Insertion sort complexity 
 

1. Time Complexity 
 

 

Case Time Complexity 

  

Best Case O(n) 

  

Average Case O(n2) 

  

Worst Case O(n2) 

 

• Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already 

sorted. The best-case time complexity of insertion sort is O(n). 
 

• Average Case Complexity - It occurs when the array elements are in jumbled order that is 
 

not properly ascending and not properly descending. The average case time complexity of 

insertion sort is O(n2). 

 

• Worst Case Complexity - It occurs when the array elements are required to be sorted in reverse 
order. That means suppose you have to sort the array elements in ascending order, but its 

elements are in descending order. The worst-case time complexity of insertion sort is O(n2). 
 

• Space Complexity 
 

Space Complexity O(1) 
 

Stable YES 
 

• The space complexity of insertion sort is O(1). It is because, in insertion sort, an extra 
 

variable is required for swapping. 
 

Implementation of insertion sort 
 

Program: Write a program to implement insertion sort in C language. 
 

• #include <stdio.h> 
 
•  
 

• void insert(int a[], int n) /* function to sort an aay with insertion sort */ 
 



• { 
 

• int i, j, temp; 
 

• for (i = 1; i < n; i++) { 
 

• temp = a[i]; 
 

• j = i - 1; 
 

9. while(j>=0 && temp <= a[j]) /* Move the elements greater than temp to one position a 

10. 

 head from their current position*/ 

11. { 

12. a[j+1] = a[j]; 

13. j = j-1; 

14. } 

15. a[j+1] = temp; 

16. } 
17. } 

18.  
• void printArr(int a[], int n) /* function to print the array */ 

 
• { 

 
• int i; 

 
• for (i = 0; i < n; i++) 

 
• printf("%d ", a[i]); 

 
• } 

 

25. 
 

• int main() 
 

• { 
 

• int a[] = { 12, 31, 25, 8, 32, 17 }; 
 

• int n = sizeof(a) / sizeof(a[0]); 
 

• printf("Before sorting array elements are - \n"); 
 

• printArr(a, n); 
 

• insert(a, n); 



 
• printf("\nAfter sorting array elements are - \n"); 

 
• printArr(a, n); 

 

35. 
 

• return 0; 
 

• } 
 

Output: 

 
 

 

 
 

 

 
 

 

Heap Sort 
 

 

Heap Sort Algorithm 
 

Heap sort processes the elements by creating the min-heap or max-heap using the elements of the 

given array. Min-heap or max-heap represents the ordering of array in which the root element 

represents the minimum or maximum element of the array. 

 

Heap sort basically recursively performs two main operations - 
 

• Build a heap H, using the elements of array. 
 

• Repeatedly delete the root element of the heap formed in 1st phase. 

 

A heap is a complete binary tree, and the binary tree is a tree in which the node can have the utmost 

two children. A complete binary tree is a binary tree in which all the levels except the last level, i.e., leaf 

node, should be completely filled, and all the nodes should be left-justified. 

 

Heapsort is a popular and efficient sorting algorithm. The concept of heap sort is to eliminate the 

elements one by one from the heap part of the list, and then insert them into the sorted part of the list. 

 

Algorithm 



 

• HeapSort(arr) 
 

• BuildMaxHeap(arr) 
 

• for i = length(arr) to 2 
 

• swap arr[1] with arr[i] 
 

• heap_size[arr] = heap_size[arr] ? 1 
 

• MaxHeapify(arr,1) 
 

• End 
 

BuildMaxHeap(arr) 
 

• BuildMaxHeap(arr) 
 

• heap_size(arr) = length(arr) 
 

• for i = length(arr)/2 to 1 
 

• MaxHeapify(arr,i) 
 

• End 
 

MaxHeapify(arr,i) 
 

• MaxHeapify(arr,i) 
 

• L = left(i) 
 

• R = right(i) 
 

• if L ? heap_size[arr] and arr[L] > arr[i] 
 

• largest = L 
 

• else 
 

• largest = i 
 

• if R ? heap_size[arr] and arr[R] > arr[largest] 
 

• largest = R 
 

• if largest != i 



 
• swap arr[i] with arr[largest] 

 
• MaxHeapify(arr,largest) 

 
• End 

 

Working of Heap sort Algorithm 
 

In heap sort, basically, there are two phases involved in the sorting of elements. By using the heap sort 

algorithm, they are as follows - 

 

• The first step includes the creation of a heap by adjusting the elements of the array. 
 

• After the creation of heap, now remove the root element of the heap repeatedly by shifting it to 

the end of the array, and then store the heap structure with the remaining elements. 

 
 

 
 

First, we have to construct a heap from the given array and convert it into max heap. 

 
 

 
 

 

 

 
 

 

 
 

After converting the given heap into max heap, the array elements are - 

 
 
 

 

Next, we have to delete the root element (89) from the max heap. To delete this node, we have to swap 

it with the last node, i.e. (11). After deleting the root element, we again have to heapify it to convert it 

into max heap. 



 
 
 

 

 

 
 

 

 
 

 

After swapping the array element 89 with 11, and converting the heap into max-heap, the elements of 

array are - 

 
 

 
 

 

 

In the next step, again, we have to delete the root element (81) from the max heap. To delete this node, 

we have to swap it with the last node, i.e. (54). After deleting the root element, we again have to 

heapify it to convert it into max heap. 

 
 

 
 

 

 
 

 

 
 

After swapping the array element 81 with 54 and converting the heap into max-heap, the elements of 

array are - 

 
 



 
 

In the next step, we have to delete the root element (76) from the max heap again. To delete this node, 

we have to swap it with the last node, i.e. (9). After deleting the root element, we again have to heapify 

it to convert it into max heap. 

 
 

 

 
 

 

 
 

 

After swapping the array element 76 with 9 and converting the heap into max-heap, the elements of 

array are - 

 
 
 

 

In the next step, again we have to delete the root element (54) from the max heap. To delete this node, 

we have to swap it with the last node, i.e. (14). After deleting the root element, we again have to 

heapify it to convert it into max heap. 

 
 

 

 

 
 

 

 
 

 

 

After swapping the array element 54 with 14 and converting the heap into max-heap, the elements of 

array are - 



 
 

 

 

In the next step, again we have to delete the root element (22) from the max heap. To delete this node, 

we have to swap it with the last node, i.e. (11). After deleting the root element, we again have to 

heapify it to convert it into max heap. 

 

After swapping the array element 22 with 11 and converting the heap into max-heap, the 

elements of array are - 

 
 
 

 

In the next step, again we have to delete the root element (14) from the max heap. To delete this 

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again 

have to heapify it to convert it into max heap. 

 
 
 

 

 
 

 

After swapping the array element 14 with 9 and converting the heap into max-heap, the elements 

of array are - 

 
 

 
 

In the next step, again we have to delete the root element (11) from the max heap. To delete this 

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again 

have to heapify it to convert it into max heap. 

 
 

 

 

 

After swapping the array element 11 with 9, the elements of array are - 

 



 
 

 

Now, heap has only one element left. After deleting it, heap will be empty. 

 
 

 

 
 

After completion of sorting, the array elements are - 

 
 
 

 

Time complexity of Heap sort in the best case, average case, and worst 

case 1. Time Complexity 

 

 
Case 

  
 

Time Complexity 
 

 
 

 

   
 
 

 

 

 

Best Case O(n logn) 
  

Average Case O(n log n) 

  

Worst Case O(n log n) 
 

• Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already 

sorted. The best-case time complexity of heap sort is O(n logn). 

 

• Average Case Complexity - It occurs when the array elements are in jumbled order that is not 

properly ascending and not properly descending. The average case time complexity of heap 

sort is O(n log n). 

 



• Worst Case Complexity - It occurs when the array elements are required to be sorted in 

reverse order. That means suppose you have to sort the array elements in ascending order, 

but its elements are in descending order. The worst-case time complexity of heap sort is O(n 

log n). 

 

The time complexity of heap sort is O(n logn) in all three cases (best case, average case, and worst 

case). The height of a complete binary tree having n elements is logn. 

 

2. Space Complexity 
 
 

Space Complexity O(1) 

  

Stable N0 
 

• The space complexity of Heap sort is O(1). 

Implementation of Heapsort 

Program: Write a program to implement heap sort in C language. 
 

• #include <stdio.h> 
 

• /* function to heapify a subtree. Here 'i' is the 
 

• index of root node in array a[], and 'n' is the size of heap. */ 
 

• void heapify(int a[], int n, int i) 
 

• { 
 

• int largest = i; // Initialize largest as root 
 

• int left = 2 * i + 1; // left child 
 

• int right = 2 * i + 2; // right child 
 

• // If left child is larger than root 
 

• if (left < n && a[left] > a[largest]) 
 

• largest = left; 
 

• // If right child is larger than root 
 

• if (right < n && a[right] > a[largest]) 
 

• largest = right; 



 
• // If root is not largest 

 
• if (largest != i) { 

 
• // swap a[i] with a[largest] 

 
• int temp = a[i]; 

 
• a[i] = a[largest]; 

 
• a[largest] = temp; 

 
• heapify(a, n, largest); 

 
• } 

 
• } 

 
• /*Function to implement the heap sort*/ 

 
• void heapSort(int a[], int n) 

 
• { 

 
• for (int i = n / 2 - 1; i >= 0; i--) 

 
• heapify(a, n, i); 

 
• // One by one extract an element from heap 

 
• for (int i = n - 1; i >= 0; i--) { 

 
• /* Move current root element to end*/ 

 
• // swap a[0] with a[i] 

 
• int temp = a[0]; 

 
• a[0] = a[i]; 

 
• a[i] = temp; 

 

36. 
 

• heapify(a, i, 0); 
 

• } 



 
• } 

 
• /* function to print the array elements */ 

 
• void printArr(int arr[], int n) 

 
• { 

 

• for (int i = 0; i < n; ++i) 
 

• { 
 

• printf("%d", arr[i]); 
 

• printf(" "); 
 

• } 
 

48. 
 

• } 
 

• int main() 
 

• { 
 

• int a[] = {48, 10, 23, 43, 28, 26, 1}; 
 

• int n = sizeof(a) / sizeof(a[0]); 
 

• printf("Before sorting array elements are - \n"); 
 

• printArr(a, n); 
 

• heapSort(a, n); 
 

• printf("\nAfter sorting array elements are - \n"); 
 

• printArr(a, n); 
 

• return 0; 
 

• } 
 

Output 



 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

UNIT 2 - GRAPHS: basics, representation, 

traversals, and application 

 

Basic concepts 

 
Definition 

 
A graph G(V, E) is a non-linear data structure that consists of node and 

edge pairs of objects connected by links. 

 
There are 2 types of graphs: 

 
Directed 

 
Undirected 

 



Directed graph 

 
A graph with only directed edges is said to be a directed graph. 

Example 

 
The following directed graph has 5 vertices and 8 edges. This graph G can 

be defined as G = (V, E), where V = {A,B,C,D,E} and E = {(A,B), (A,C) (B, 

E), (B,D), (D, A), (D, E),(C,D),(D,D)}. 

 
 
 

 

 

 
 

 

 
Directed Graph 

 
Undirected graph 

 
A graph with only undirected edges is said to be an undirected graph. 

 
Example 

 
The following is an undirected graph. 

 
 

 
 

 

 

 
 

 
Undirected Graph 

 

 

https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs
https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs


 
Representation of Graphs 

 
Graph data structure is represented using the following 

representations. 

 
• Adjacency Matrix 

 

• Adjacency List 

 
Adjacency Matrix 

 
In this representation, the graph can be represented using a 

matrix of size n x n, where n is the number of vertices. 

This matrix is filled with either 1’s or 0’s. 

 
Here, 1 represents that there is an edge from row vertex to column 

vertex, and 0 represents that there is no edge from row vertex to 

column vertex. 

 
 

 
 

 

 
 

 

 

 
 
Directed graph representation 

 
Adjacency list 

 
In this representation, every vertex of the graph contains a 

list of its adjacent vertices. 

If the graph is not dense, i.e., the number of edges is less, 

then it is efficient to represent the graph through the adjacency 

list. 

https://www.educative.io/edpresso/what-is-an-adjacency-matrix


 
 
 

 

 
 

 

 

 
 
Adjacency List 

 

Graph traversals 

 
Graph traversal is a technique used to search for a vertex in a 

graph. It is also used to decide the order of vertices to be 

visited in the search process. 

A graph traversal finds the edges to be used in the search 

process without creating loops. This means that, with graph 

traversal, we can visit all the vertices of the graph without 

getting into a looping path. There are two graph traversal 

techniques: 

 
• DFS (Depth First Search) 

 

• BFS (Breadth-First Search) 

 

Applications of graphs 
 

 
1. Social network graphs : To tweet or not to tweet. Graphs that 

represent who knows whom, who communicates with whom, who influences 

whom, or other relationships in social structures. An example is the 

twitter graph of who follows whom. 

 
2. Graphs in epidemiology: Vertices represent individuals and directed 

edges to view the transfer of an infectious disease from one 

individual to another. Analyzing such graphs has become an important 

component in understanding and controlling the spread of diseases. 

3. Protein-protein interactions graphs: Vertices represent proteins and 

edges represent interactions between them that carry out some 

biological function in the cell. These graphs can be used to, for 

https://www.educative.io/edpresso/what-is-depth-first-search
https://www.educative.io/edpresso/what-is-breadth-first-search


example, study molecular pathway—chains of molecular interactions in 

a cellular process. 

 
4. Network packet traffic graphs: Vertices are IP (Internet protocol) 

addresses and edges are the packets that flow between them. Such 

graphs are used for analyzing network security, studying the spread 

of worms, and tracking criminal or non-criminal activity. 

5. Neural networks: Vertices represent neurons and edges are the 

synapses between them. Neural networks are used to understand how 

our brain works and how connections change when we learn. The 

human brain has about 1011 neurons and close to 1015 synapses. 

 

 

DFS – Depth First Search 
 

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack to 

remember to get the next vertex to start a search, when a dead end occurs in any iteration. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, then to F 

and lastly to C. It employs the following rules. 

 

Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack. 



 

Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the 

vertices from the stack, which do not have adjacent vertices.) 

 

Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

 
 
Step 

  
 

Traversal 
  
 
Description 

 

  

1   
  Initialize the stack. 

   

2  Mark S as visited and put it onto the 

  stack. Explore any unvisited adjacent 

  node from S. We have three nodes and 

  we can pick any of them. For this 

  example, we shall take the node in an 

  alphabetical order. 

   

3  Mark A as visited and put it onto the 

  stack. Explore any unvisited adjacent 

  node from A. Both S and D are 

  adjacent to A but we are concerned 
  for unvisited nodes only. 

   

4  Visit D and mark it as visited and put 

  onto the stack. Here, we 
  have B and C nodes, which are 

  adjacent to D and both are unvisited. 

  However, we shall again choose in an 

  alphabetical order. 

   

5  We choose B, mark it as visited and 

  
  put onto the stack. Here B does not 

  have any unvisited adjacent node. So, 

  we pop B from the stack. 

   



6   
  We check the stack top for return to 

  the previous node and check if it has 

  any unvisited nodes. Here, we 

  find D to be on the top of the stack. 

   

7   
  Only unvisited adjacent node is 

  from D is C now. So we visit C, mark it 

  as visited and put it onto the stack. 

  

 

 

 

 

 

 
 

 

 
 

Pseudocode of DFS 
 
DFS(G, u) 
  

 
 

u.visited = true 
 

for each v   G.Adj[u] 

if 
v.visited == false 



 
∈ 

  
 DFS(G,v)  
init() {      

For each u   G 

   
= false
 

u.visited  ∈ 
 

For each u ∈ G 

DFS(G, u)  
} 
 

 

Application of DFS Algorithm 
 

• For finding the path 
 

• To test if the graph is bipartite 
 

• For finding the strongly connected components of a graph 
 

• For detecting cycles in a graph 
 

Breadth First Search 
 

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a queue to 

remember to get the next vertex to start a search, when a dead end occurs in any iteration. 

 
 

 
 

 

 
 

 

 
 

 

 



 
 

 

 

 
 

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C and G 

lastly to D. It employs the following rules. 

 

Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue. 

Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 
 

   

Step Traversal  Description 

    

1    
   Initialize the queue. 

    

2    
   We start from visiting S (starting 

   node), and mark it as visited. 

    

3   We then see an unvisited adjacent 

   
   node from S. In this example, we have 

   three nodes but alphabetically we 

   choose A, mark it as visited and 

   enqueue it. 

    

4    
   Next, the unvisited adjacent node 

   from S is B. We mark it as visited and 

   enqueue it. 

    

5    
   Next, the unvisited adjacent node 

   from S is C. We mark it as visited and 

   enqueue it. 

    

6    

   Now, S is left with no unvisited 

   adjacent nodes. So, we dequeue and 

   find A. 

    



7   From A we have D as 

   
   unvisited adjacent node. We 

   mark it as visited and 

   enqueue it. 

    

 
 

 

 

BFS pseudocode 
 

create a queue Q 
 

mark v as visited and put v into Q 
 

while Q is non-empty 
 

remove the head u of Q 
 

mark and enqueue all (unvisited) neighbours of u 
 

BFS Algorithm Complexity 
 

The time complexity of the BFS algorithm is represented in the form of O(V + E), where V is the 

number of nodes and E is the number of edges. 

 

The space complexity of the algorithm is O(V). 



 

BFS Algorithm Applications 
 

• To build index by search index 
 

• For GPS navigation 
 

• Path finding algorithms 
 

• In Ford-Fulkerson algorithm to find maximum flow in a network 
 

• Cycle detection in an undirected graph 
 

• In minimum spanning tree 
 

Connected graph , Strongly connected and Bi-Connectivity 
 

Connected Graph Component 
 

A connected component or simply component of an undirected graph is a subgraph in which each 

pair of nodes is connected with each other via a path. 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.baeldung.com/cs/graphs
https://en.wikipedia.org/wiki/Path_graph


 
 

 

Strongly Connected Graph 
 

The Kosaraju algorithm is a DFS based algorithm used to find Strongly Connected 
 

Components(SCC) in a graph. It is based on the idea that if one is able to reach a vertex v starting from 

vertex u, then one should be able to reach vertex u starting from vertex v and if such is the case, one can 

say that vertices u and v are strongly connected - they are in a strongly connected sub-graph. 

 
 

 
 

 

 
 

stack STACK 
 

void DFS(int source) { 
 

visited[s]=true 
 

for all neighbours X of source that are not visited: 
 

DFS(X) 
 

STACK.push(source) 
 

} 
 

CLEAR ADJACENCY_LIST 
 

for all edges e: 
 

first = one end point of e 
 

second = other end point of e 
 

ADJACENCY_LIST[second].push(first) 
 

while STACK is not empty: 
 

source = STACK.top() 
 



STACK.pop() 
 

if source is visited : 
 

continue 
 

else : 
 

DFS(source) 
 

 

Bi Connectivity Graph 
 

An undirected graph is said to be a biconnected graph, if there are two vertex-disjoint paths between 

any two vertices are present. In other words, we can say that there is a cycle between any two 

vertices. 

 
 

 
 

 

 
 

 

 

 
 

We can say that a graph G is a bi-connected graph if it is connected, and there are no articulation 

points or cut vertex are present in the graph. 

 

To solve this problem, we will use the DFS traversal. Using DFS, we will try to find if there is any 

articulation point is present or not. We also check whether all vertices are visited by the DFS or not, if 

not we can say that the graph is not connected. 

 

Pseudocode for Bi connectivity 
 

isArticulation(start, visited, disc, low, parent) 
 

Begin 
 

time := 0 //the value of time will not be initialized for next function calls 

dfsChild := 0 



 

mark start as visited 
 

set disc[start] := time+1 and low[start] := time + 1 
 

time := time + 1 
 

for all vertex v in the graph G, do 
 

if there is an edge between (start, v), then 
 

if v is visited, then 
 

increase dfsChild 
 

parent[v] := start 
 

if isArticulation(v, visited, disc, low, parent) is true, then 

return ture 

 

low[start] := minimum of low[start] and low[v] 
 

if parent[start] is φ AND dfsChild > 1, then 
 

return true 
 

if parent[start] is φ AND low[v] >= disc[start], then 
 

return true 
 

else if v is not the parent of start, then 
 

low[start] := minimum of low[start] and disc[v] 
 

done 
 

return false 
 

End 
 

isBiconnected(graph) 
 

Begin 
 

initially set all vertices are unvisited and parent of each vertices are φ if 

isArticulation(0, visited, disc, low, parent) = true, then 

 

return false 
 



for each node i of the graph, do 
 

if i is not visited, then 
 

return false 
 

done 
 

return true 
 

End 
 

Minimum Spanning Tree 
 

A Spanning Tree is a tree which have V vertices and V-1 edges. All nodes in a spanning tree are 

reachable from each other. 
 

A Minimum Spanning Tree(MST) or minimum weight spanning tree for a weighted, connected, 

undirected graph is a spanning tree having a weight less than or equal to the weight of every 

other possible spanning tree. The weight of a spanning tree is the sum of weights given to each 

edge of the spanning tree. In short out of all spanning trees of a given graph, the spanning tree 

having minimum weight is MST. 
 

Algorithms for finding Minimum Spanning Tree(MST):- 
 

• Prim’s Algorithm 
 

• Kruskal’s Algorithm 
 
 

Prim’s Algorithm 
 

Prim's algorithm is a minimum spanning tree HYPERLINK "https://www.programiz.com/dsa/spanning-

tree-and-minimum-spanning-tree" HYPERLINK "https://www.programiz.com/dsa/spanning-tree-and-

minimum-spanning-tree" HYPERLINK "https://www.programiz.com/dsa/spanning-tree-and-minimum-

spanning-tree" algorithm that takes a graph as input and finds the subset of the edges of that graph 

which 

 

form a tree that includes every vertex 
 

has the minimum sum of weights among all the trees that can be formed from the graph 
 

 

How Prim's algorithm works 
 

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree


It falls under a class of algorithms called greedy algorithms HYPERLINK 

"https://www.programiz.com/dsa/greedy-algorithm" HYPERLINK 

"https://www.programiz.com/dsa/greedy-algorithm" HYPERLINK 

"https://www.programiz.com/dsa/greedy-algorithm" that find the local optimum in the hopes of finding 

a global optimum. 

 

We start from one vertex and keep adding edges with the lowest weight until we reach our goal. 
 

The steps for implementing Prim's algorithm are as follows: 
 

• Initialize the minimum spanning tree with a vertex chosen at random. 
 

• Find all the edges that connect the tree to new vertices, find the minimum and add it to the tree 

 
• Keep repeating step 2 until we get a minimum spanning tree 

 
 

Example of Prim's algorithm 

 
 

 
 

 

 

 
 

 

 

Start with a weighted graph 

 
 

 

 
 

 

Choose a vertex 

 

https://www.programiz.com/dsa/greedy-algorithm
https://www.programiz.com/dsa/greedy-algorithm
https://www.programiz.com/dsa/greedy-algorithm
https://www.programiz.com/dsa/greedy-algorithm


 
 

 

 

 
 

 

 
 

Choose the shortest edge from this vertex and add it 

 
 

 
 

 

 
 

 

Choose the nearest vertex not yet in the solution 

 
 
 

 

 
 

 

 
 

Choose the nearest edge not yet in the solution, if there are multiple choices, choose one at random 
 

 
 

 

 
 



 
 

 

 

 
 

Prim's Algorithm pseudocode 
 

The pseudocode for prim's algorithm shows how we create two sets of vertices U and V-U. U 
contains the list of vertices that have been visited and V-U the list of vertices that haven't. One by 
U = ∅

 
      

one, we move vertices from set V-U to set U by connecting the least weight edge. 

T 
= 

;       

 {1};      
while (U ≠ V)    

let (u, v) be the lowest cost edge such that u  U and 
v 

V-U; 

T = 
T 

∪ 
 

∈ 
 

∈ 

 {(u, v)}  
U=U∪  {v}    

Prim's Algorithm Complexity 
 

The time complexity of Prim's algorithm is O(E log V). 
 

Kruskal Algorithm 
 

Kruskal's algorithm is a minimum spanning tree HYPERLINK "https://www.programiz.com/dsa/spanning-

tree-and-minimum-spanning-tree" HYPERLINK "https://www.programiz.com/dsa/spanning-tree-and-

minimum-spanning-tree" HYPERLINK "https://www.programiz.com/dsa/spanning-tree-and-minimum-

spanning-tree" algorithm that takes a graph as input and finds the subset of the edges of that graph 

which 

 

form a tree that includes every vertex 
 

has the minimum sum of weights among all the trees that can be formed from the graph 
 

How Kruskal's algorithm works 
 

It falls under a class of algorithms called greedy algorithms HYPERLINK 

"http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm" 

HYPERLINK 

"http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm" 

HYPERLINK 

"http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm" that 

find the local optimum in the hopes of finding a global optimum. 

 

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm


We start from the edges with the lowest weight and keep adding edges until we reach our goal. 

The steps for implementing Kruskal's algorithm are as follows: 

 

• Sort all the edges from low weight to high 
 

• Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created 

a cycle, then reject this edge. 

• Keep adding edges until we reach all vertices. 
 

 

Example of Kruskal's algorithm 

 
 
 

 

 
 

 

 

 
 

 

Start with a weighted graph 

 
 
 

 

 

 

Choose the edge with the least weight, if there are more than 1, choose anyone 
 

 
 

 
 
 



Choose the next shortest edge and add it 

 
 

 
 

 

 

 

Choose the next shortest edge that doesn't create a cycle and add it 

 
 

 

 

 
 

 

 

Choose the next shortest edge that doesn't create a cycle and add it 

 
 
 

 

 

 
 

 

 

Repeat until you have a spanning tree 
 

 

Kruskal Algorithm Pseudocode 
 

KRUSKAL(G): 
A =   G.V: 
For each vertex v 

 
 

∅ ∈  



MAKE-SET(v)  
For each edge (u, v) G.E ordered by increasing order by weight(u, v): 

if FIND-SET(u) 
≠ 

FIND-SET(v): 
∈ 

A = A  {(u, v)}  
UNION(u, v) 

 
∪ 

 
return A  
 

Shortest Path Algorithm 
 

The shortest path problem is about finding a path between vertices in a graph such that the total sum 

of the edges weights is minimum. 

 

Algorithm for Shortest Path 
 

• Bellman Algorithm 
 

• Dijkstra Algorithm 
 

• Floyd Warshall Algorithm 
 

Bellman Algorithm 
 

Bellman Ford algorithm helps us find the shortest path from a vertex to all other vertices of a weighted 

graph. 

 

It is similar to Dijkstra's algorithm but it can work with graphs in which edges can have negative weights. 

 
 

 
How Bellman Ford's algorithm works 

  

 
 

Bellman Ford algorithm works by overestimating the length of the path from the starting vertex to all 

other vertices. Then it iteratively relaxes those estimates by finding new paths that are shorter than the 

previously overestimated paths. 

 

By doing this repeatedly for all vertices, we can guarantee that the result is optimized. 

https://www.programiz.com/dsa/dijkstra-algorithm


 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Step-1 for Bellman Ford's algorithm 



 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

Step-2 for Bellman Ford's algorithm 



 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

Step-3 for Bellman Ford's algorithm 
 



 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 



 
Step-4 for Bellman Ford's algorithm 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 



 
Step-5 for Bellman Ford's algorithm 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

Step-6 for Bellman Ford's algorithm 
 

Bellman Ford Pseudocode 
 



We need to maintain the path distance of every vertex. We can store that in an array of size v, 

where v is the number of vertices. 

 

We also want to be able to get the shortest path, not only know the length of the shortest path. For 

this, we map each vertex to the vertex that last updated its path length. 

 

Once the algorithm is over, we can backtrack from the destination vertex to the source vertex to 

find the path. 

 

function bellmanFord(G, S) 
 

for each vertex V in G 
 

distance[V] <- infinite 
 

previous[V] <- NULL 
 

distance[S] <- 0 
 

for each vertex V in G 
 

for each edge (U,V) in G 
 

tempDistance <- distance[U] + edge_weight(U, V) 
 

if tempDistance < distance[V] 
 

distance[V] <- tempDistance 
 

previous[V] <- U 
 

for each edge (U,V) in G 
 

If distance[U] + edge_weight(U, V) < distance[V} 
 

Error: Negative Cycle Exists 
 

return distance[], previous[]  
Bellman Ford's Complexity  
Time Complexity  
Best Case Complexity O(E) 

  
Average Case Complexity O(VE) 

  
Worst Case Complexity O(VE) 

  
 

Dijkstra Algorithm 



 

Dijkstra's algorithm allows us to find the shortest path between any two vertices of a graph. 
 

It differs from the minimum spanning tree because the shortest distance between two vertices 

might not include all the vertices of the graph. 

 

How Dijkstra's Algorithm works 
 

Dijkstra's Algorithm works on the basis that any subpath B -> D of the shortest path A -> D between 

vertices A and D is also the shortest path between vertices B and D. 

 
 

 

 
 

 

 
 

 

 

Each subpath is the shortest path 
  

 
 

Djikstra used this property in the opposite direction i.e we overestimate the distance of each vertex 

from the starting vertex. Then we visit each node and its neighbors to find the shortest subpath to 

those neighbors. 

 

The algorithm uses a greedy approach in the sense that we find the next best solution hoping that the 

end result is the best solution for the whole problem. 

 

Example of Dijkstra's algorithm 
 

It is easier to start with an example and then think about the algorithm. 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 
Start with a weighted graph 
 
 

 

 
 

 



 
 

 

 

 
 

 
Choose a starting vertex and assign infinity path values to all other devices 
 
 

 

 
 

 

 

 
 

 

 
 

Go to each vertex and update its path length

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

If the path length of the adjacent vertex is lesser than new path length, don't update it 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Avoid updating path lengths of already visited vertices 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

After each iteration, we pick the unvisited vertex with the least path length. So we choose 5 before 7 
 

 

 
 

 

 



 
 

 

 

 
 

 

 
 

 

 

Notice how the rightmost vertex has its path length updated twice 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Repeat until all the vertices have been visited 
 

Djikstra's algorithm pseudocode 
 

We need to maintain the path distance of every vertex. We can store that in an array of size v, where v 

is the number of vertices. 

 



We also want to be able to get the shortest path, not only know the length of the shortest path. For this, 

we map each vertex to the vertex that last updated its path length. 

 

Once the algorithm is over, we can backtrack from the destination vertex to the source vertex to find 

the path. 

 

A minimum priority queue can be used to efficiently receive the vertex with least path distance. 

function dijkstra(G, S) 
 

for each vertex V in G 
 

distance[V] <- infinite 
 

previous[V] <- NULL 
 

If V != S, add V to Priority Queue Q 
 

distance[S] <- 0 
 

while Q IS NOT EMPTY 
 

U <- Extract MIN from Q 
 

for each unvisited neighbour V of U 
 

tempDistance <- distance[U] + edge_weight(U, V) 
 

if tempDistance < distance[V] 
 

distance[V] <- tempDistance 
 

previous[V] <- U 
 

return distance[], previous[] 
 

 
 

Dijkstra's Algorithm Complexity 
 

Time Complexity: O(E Log V) 
 

where, E is the number of edges and V is the number of vertices. 
 

Space Complexity: O(V) 
 

Floyd Warshall Algorithm 
 



Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of vertices in 

a weighted graph. This algorithm works for both the directed and undirected weighted graphs. But, it 

does not work for the graphs with negative cycles (where the sum of the edges in a cycle is negative). 

 

A weighted graph is a graph in which each edge has a numerical value associated with it. Floyd-

Warhshall algorithm is also called as Floyd's algorithm, Roy-Floyd algorithm, Roy-Warshall algorithm, or 

WFI algorithm. 

 

This algorithm follows the dynamic programming HYPERLINK 
"https://www.programiz.com/dsa/dynamic-programming" HYPERLINK 
"https://www.programiz.com/dsa/dynamic-programming" HYPERLINK 
"https://www.programiz.com/dsa/dynamic-programming" approach to find the shortest paths. 
 
 

How Floyd-Warshall Algorithm Works? 
 

Let the given graph be: 
 

Initial graph 
 

Follow the steps below to find the shortest path between all the pairs of vertices. 
 

• Create a matrix A0 of dimension n*n where n is the number of vertices. The row and the column 

are indexed as i and j respectively. i and j are the vertices of the graph. 
 

Each cell A[i][j] is filled with the distance from the ith vertex to the jth vertex. If there is no path 

from ith vertex to jth vertex, the cell is left as infinity. 

 
 
 
 
 
 

Fill each cell with the distance between ith and jth vertex 
 
 
 

• Now, create a matrix A1 using matrix A0. The elements in the first column and the first row are 

left as they are. The remaining cells are filled in the following way. 
Let k be the intermediate vertex in the shortest path from source to destination. In this step, k is 

the first vertex. A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k] + A[k][j]). 

https://www.programiz.com/dsa/dynamic-programming
https://www.programiz.com/dsa/dynamic-programming
https://www.programiz.com/dsa/dynamic-programming
https://www.programiz.com/dsa/dynamic-programming


 
That is, if the direct distance from the source to the destination is greater than the path h the 

vertex k, then the cell is filled with A[i][k] + A[k][j]. 

 
In this step, k is vertex 1. We calculate the distance from source vertex to destination vertex 

 

through this vertex 
 

k.Calcula 
 

te the distance from the source vertex to destination vertex through this vertex k 
 

 
 

For example: For A1[2, 4], the direct distance from vertex 2 to 4 is 4 and the sum of the distance 

from vertex 2 to 4 through vertex (ie. from vertex 2 to 1 and from vertex 1 to 4) is 7. Since 4 < 7, 

A0[2, 4] is filled with 4. 

 

• Similarly, A2 is created using A1. The elements in the second column and the second row are left 

as they are. 
 

In this step, k is the second vertex (i.e. vertex 2). The remaining steps are the same as in step 
 

2.Calcula te the distance from the source vertex to destination vertex through this vertex 2 

4. Similarly, A3 and A4 is also created. 

 Calculat e the distance from the source vertex to destination vertex through this 

 
 

 
vertex C alculate the distance from the source vertex to destination vertex through this vertex 4 

 

5. A4 gives the shortest path between each pair of vertices. 

 

 

Floyd-Warshall Algorithm 
 

n = no of vertices 
 

A = matrix of dimension n*n 
 



for k = 1 to n 
 

for i = 1 to n 
 

for j = 1 to n 

Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k] + Ak-1[k, j]) 

 

return A 
 

 
 

Time Complexity 
 

There are three loops. Each loop has constant complexities. So, the time complexity of the Floyd-

Warshall algorithm is O(n3). 

 

Network Flow 
 

Flow Network is a directed graph that is used for modeling material Flow. There are two different 

vertices; one is a source which produces material at some steady rate, and another one is sink which 

consumes the content at the same constant speed. The flow of the material at any mark in the system is 

the rate at which the element moves. 

 

Some real-life problems like the flow of liquids through pipes, the current through wires and delivery 
of goods can be modelled using flow networks. ∉  
Definition: A Flow Network is a directed graph G = (V, E) such that  

1. For each edge (u, v)  E, we associate a nonnegative weight 
capacity c (u, v) ≥ 0.If (u, v) 

E, 

 
v) = 0. 

 
 

we assume  that  c (u,∈ 
 

2. There are two distinguishing points, the source s, and the sink 
t; 

  

3. 
For every vertex v ∈ V, there is a path from s to t containing v. 

  
Let G = (V, E) be a flow network. Let s be the source of the network, and let t be the sink. A flow in G is a 
real-valued function f: V x V→R such that the following properties hold: Play Video 
 

o Capacity Constraint: For all u, v  V, we need f (u, v) ≤ c (u, v). 
o Skew Symmetry: For all u, v 

∈ 
V,∈we need f (u, v) = - f (u , v). 

∈ 
o Flow Conservation: For all u V-{s, t}, we need 

 
 

 



The quantity f (u, v), which can be positive or negative, is known as the net flow from vertex u to vertex 

v. In the maximum-flow problem, we are given a flow network G with source s and sink t, and 

 

a flow of maximum value from s to t. 
 
 

Ford-Fulkerson Algorithm 
  

 
 

Initially, the flow of value is 0. Find some augmenting Path p and increase flow f on each edge of p by 

residual Capacity cf (p). When no augmenting path exists, flow f is a maximum flow. 

FORD-FULKERSON METHOD (G, s, t) 
 

• Initialize flow f to 0 
 
• while there exists an augmenting path p 
 
• do argument flow f along p 
 
• Return f 

FORD-FULKERSON (G, s,∈ t) 

 

1. for each edge (u, v) E [G] 
 

• do f [u, v] ← 0 
 
• f [u, v] ← 0 
 
• while there exists a path p from s to t in the residual network Gf. 
 
• do cf (p)←min?{ Cf (u,v):(u,v)is on p} 
 
• for each edge (u, v) in p 
 
• do f [u, v] ← f [u, v] + cf  (p) 
 
• f [u, v] ←-f[u,v] 
 

Example: Each Directed Edge is labeled with capacity. Use the Ford-Fulkerson algorithm to find the 

maximum flow. 



 
 

 

 
 

 

 
 

 

 

Solution: The left side of each part shows the residual network Gf with a shaded augmenting path p,and 

the right side of each part shows the net flow f.  

 

 
 

 

 
 

 

 

 
 



 
 

 

 

 
 

 

 
 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

Maximum Bipartite Matching 
 

The bipartite matching is a set of edges in a graph is chosen in such a way, that no two edges in that set 

will share an endpoint. The maximum matching is matching the maximum number of edges. 

 
 

 

 

 
 

 

 
 



 
 

When the maximum match is found, we cannot add another edge. If one edge is added to the maximum 

matched graph, it is no longer a matching. For a bipartite graph, there can be more than one maximum 

matching is possible. 

 

Algorithm 
 

bipartiteMatch(u, visited, assign) 
 

Input: Starting node, visited list to keep track, assign the list to assign node with another node. 
 

Output − Returns true when a matching for vertex u is possible. 
 

Begin 
 

for all vertex v, which are adjacent with u, do 
 

if v is not visited, then 
 

mark v as visited 
 

if v is not assigned, or bipartiteMatch(assign[v], visited, assign) is true, then 

assign[v] := u 

 

return true 
 

done 
 

return false 
 

End 
 

maxMatch(graph) 
 

Input − The given graph. 
 

Output − The maximum number of the match. 
 

Begin 
 

initially no vertex is assigned 
 

count := 0 
 

for all applicant u in M, do 
 

make all node as unvisited 
 



if bipartiteMatch(u, visited, assign), then 
 

increase count by 1 
 

done 
 

End 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Unit 3 
 

Divide and Conquer Algorithm 
 

A divide and conquer algorithm is a strategy of solving a large problem by 
 

• breaking the problem into smaller sub-problems 
 

• solving the sub-problems, and 
 

• combining them to get the desired output. 
 

To use the divide and conquer algorithm, recursion is used. 
 

How Divide and Conquer Algorithms Work? 
 

Here are the steps involved: 
 

• Divide: Divide the given problem into sub-problems using recursion. 
 

• Conquer: Solve the smaller sub-problems recursively. If the subproblem is small 

enough, then solve it directly. 

 
• Combine: Combine the solutions of the sub-problems that are part of the recursive 

process to solve the actual problem. 

 
 

Finding Maximum and Minimum 
 

To find the maximum and minimum numbers in a given array numbers[] of size n, the 

following algorithm can be used. First we are representing the naive method and then we 

will present divide and conquer approach. 
 

Naïve Method 
 

Naïve method is a basic method to solve any problem. In this method, the maximum and 

minimum number can be found separately. To find the maximum and minimum numbers, 

the following straightforward algorithm can be used. 
 

Algorithm: Max-Min-Element (numbers[]) 
 

max := numbers[1] 
 



min := numbers[1] 
 

for i = 2 to n do 
 

if numbers[i] > max then 
 

max := numbers[i] 
 

if numbers[i] < min then 
 

min := numbers[i] 
 

return (max, min) 
 

 

Analysis 
 

The number of comparison in Naive method is 2n - 2. 
 

The number of comparisons can be reduced using the divide and conquer approach. 
 

Following is the technique. 
 

 
 

 

Divide and Conquer Approach 
 

In this approach, the array is divided into two halves. Then using recursive approach maximum 

and minimum numbers in each halves are found. Later, return the maximum of two maxima of 

each half and the minimum of two minima of each half. 
 

In this given problem, the number of elements in an array is y−x+1 , where y is greater than or 

equal to x. 

 

Max−Min(x,y) will return the maximum and minimum values of an array numbers[x...y]. 
 

Algorithm: Max - Min(x, y) 
 

if y – x ≤ 1 then 
 

return (max(numbers[x], numbers[y]), min((numbers[x], numbers[y])) 
 

else      

(max1, min1):= maxmin(x,  ((x + y)/2) )  

(max2, min2):= maxmin( 
((x + y)/2) + 1) ,y)

 
 

⌊ 
 

⌋ 
 

return (max(max1, max2),
⌊

min(min1, min2)) 



 
⌋ 

Analysis 
 

Let T(n) be the number of comparisons made by Max−Min(x,y), where the number of 

elements n=y−x+1. 

 

If T(n) represents the numbers, then the recurrence relation can be represented as 

 
 
 

 

 
 

 

 

 
 

 

 
 

Let us assume that n is in the form of power of 2. Hence, n = 2k where k is height of the 

recursion tree. 
 

So, 

 
 
 

 

 
 

 

 
 

Compared to Naïve method, in divide and conquer approach, the number of comparisons is 

less. However, using the asymptotic notation both of the approaches are represented by O(n). 
 

 
 

 



Merge Sort 
 

Merge Sort is one of the most popular sorting algorithms that is based on the principle of 

Divide and Conquer Algorithm. 

 

Here, a problem is divided into multiple sub-problems. Each sub-problem is solved 

individually. Finally, sub-problems are combined to form the final solution. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

https://www.programiz.com/dsa/sorting-algorithm
https://www.programiz.com/dsa/divide-and-conquer


 
 

 

 

 

Merge Sort example 
 

 

 
 

Divide and Conquer Strategy 
 

Using the Divide and Conquer technique, we divide a problem into subproblems. When the 

solution to each subproblem is ready, we 'combine' the results from the subproblems to solve 

the main problem. 

 

Suppose we had to sort an array A. A subproblem would be to sort a sub-section of this 

array starting at index p and ending at index r, denoted as A[p..r]. 

 

Divide 
 

If q is the half-way point between p and r, then we can split the subarray A[p..r] into two 

arrays A[p..q] and A[q+1, r]. 

 

Conquer 
 

In the conquer step, we try to sort both the subarrays A[p..q] and A[q+1, r]. If we haven't yet 

reached the base case, we again divide both these subarrays and try to sort them. 

 

Combine 
 

When the conquer step reaches the base step and we get two sorted 
 

subarrays A[p..q] and A[q+1, r] for array A[p..r], we combine the results by creating a sorted 

array A[p..r] from two sorted subarrays A[p..q] and A[q+1, r]. 

 

 
 

MergeSort Algorithm 
 

The MergeSort function repeatedly divides the array into two halves until we reach a stage 

where we try to perform MergeSort on a subarray of size 1 i.e. p == r. 

 

After that, the merge function comes into play and combines the sorted arrays into larger 

arrays until the whole array is merged. 



 

MergeSort(A, p, r): 
 

if p > r 
 

return 
 

q = (p+r)/2 
 

mergeSort(A, p, q) 
 

mergeSort(A, q+1, r) 
 

merge(A, p, q, r) 
 

 

void merge(int arr[], int p, int q, int r) 
 

{ 
 

• Create L ← A[p..q] and M ← A[q+1..r] int 

n1 = q - p + 1; 

 
int n2 = r - q; int 

L[n1], M[n2]; 

 
for (int i = 0; i < n1; i++) 

L[i] = arr[p + i]; 

 
for (int j = 0; j < n2; j++) 

M[j] = arr[q + 1 + j]; 

 
• Maintain current index of sub-arrays and main array int 

i, j, k; 

 
i = 0; j = 

0; k = p; 

 
• Until we reach either end of either L or M, pick larger among 

 
• elements L and M and place them in the correct position at A[p..r] 

while (i < n1 && j < n2) 

 
{ 



if (L[i] <= M[j]) 
{ 

arr[k] = L[i]; 
 

i++; 
} 

else 
{ 

arr[k] = M[j]; 
j++; 

} 
k++; 

} 
 

• When we run out of elements in either L or M, 
• pick up the remaining elements and put in A[p..r] 

while (i < n1) 
 

{ 
arr[k] = L[i]; 
i++; 

 
k++; 

} 
 

while (j < n2) 
{ 

arr[k] = M[j]; 
j++; 
k++; 

 

} 
} 

 
 

Time Complexity 
 

Best Case Complexity: O(n*log n) 
 

Worst Case Complexity: O(n*log n) 
 

Average Case Complexity: O(n*log n) 
 

Dynamic Programming 
 



Matrix Chain Multiplication 
 

Dynamic programming is a method for solving optimization problems. 
 

It is algorithm technique to solve a complex and overlapping sub-problems. Compute the 

solutions to the sub-problems once and store the solutions in a table, so that they can be 

reused (repeatedly) later. 
 

Dynamic programming is more efficient then other algorithm methods like as Greedy 

method, Divide and Conquer method, Recursion method, etc…. 

 

The real time many of problems are not solve using simple and traditional approach methods. 

like as coin change problem , knapsack problem, Fibonacci sequence generating , complex 

matrix multiplication….To solve using Iterative formula, tedious method , repetition 
 

again and again it become a more time consuming and foolish. some of the problem it 

should be necessary to divide a sub problems and compute its again and again to solve a 

 

such kind of problems and give the optimal solution , effective solution the Dynamic 

programming is needed… 

 

Basic Features of Dynamic programming :- 
 

Get all the possible solution and pick up best and optimal solution. 

Work on principal of optimality. 

Define sub-parts and solve them using recursively. Less 

space complexity But more Time complexity. 

Dynamic programming saves us from having to recompute previously calculated sub-

solutions. 

 

Difficult to understanding. 
 

We are covered a many of the real world problems.In our day to day life when we do making 

coin change, robotics world, aircraft, mathematical problems like Fibonacci sequence, simple 

matrix multiplication of more then two matrices and its multiplication possibility is many more 

so in that get the best and optimal solution. NOW we can look about one problem that is 

MATRIX CHAIN MULTIPLICATION PROBLEM. 

 

Suppose, We are given a sequence (chain) (A1, A2……An) of n matrices to be multiplied, and 
 

we wish to compute the product (A1A2…..An).We can evaluate the above expression using 



 

the standard algorithm for multiplying pairs of matrices as a subroutine once we have 

parenthesized it to resolve all ambiguities in how the matrices are multiplied together. Matrix 

multiplication is associative, and so all parenthesizations yield the same product. For example, 

if the chain of matrices is (A1, A2, A3, A4) then we can fully parenthesize the product 

(A1A2A3A4) in five distinct ways: 
 

1:-(A1(A2(A3A4))) , 
 

2:-(A1((A2A3)A4)), 
 

3:- ((A1A2)(A3A4)), 
 

4:-((A1(A2A3))A4), 
 

5:-(((A1A2)A3)A4) . 
 

We can multiply two matrices A and B only if they are compatible. the number of columns of A 

must equal the number of rows of B. If A is a p x q matrix and B is a q x r matrix,the resulting 

matrix C is a p x r matrix. The time to compute C is dominated by the number of scalar 

multiplications is pqr. we shall express costs in terms of the number of scalar 

multiplications.For example, if we have three matrices (A1,A2,A3) and its cost is 
 

(10x100),(100x5),(5x500) respectively. so we can calculate the cost of scalar multiplication is 

10*100*5=5000 if ((A1A2)A3), 10*5*500=25000 if (A1(A2A3)), and so on cost calculation. Note 

that in the matrix-chain multiplication problem, we are not actually multiplying matrices. Our 

goal is only to determine an order for multiplying matrices that has the lowest cost.that is 

here is minimum cost is 5000 for above example .So problem is we can perform a many time of 

cost multiplication and repeatedly the calculation is 

 

performing. so this general method is very time consuming and tedious.So we can 

apply dynamic programming for solve this kind of problem. 

 

when we used the Dynamic programming technique we shall follow some steps. 
 

• Characterize the structure of an optimal solution. 
 

• Recursively define the value of an optimal solution. 
 

• Compute the value of an optimal solution. 
 

• Construct an optimal solution from computed information. 



 
 
 

 

 
 

 

 

 
 

 

 

we have matrices of any of order. our goal is find optimal cost multiplication of 

matrices.when we solve the this kind of problem using DP step 2 we can get 

 

m[i , j] = min { m[i , k] + m[i+k , j] + pi-1*pk*pj } if i < j…. where p is dimension of matrix , i ≤ 
 

k < j ….. 
 

The basic algorithm of matrix chain multiplication:- 
 

• Matrix A[i] has dimension dims[i-1] x dims[i] for i = 1..n 
 
MatrixChainMultiplication(int dims[]) 
 
{ 
 
• length[dims] = n + 1 
 

n = dims.length - 1; 
 

• m[i,j] = Minimum number of scalar multiplications(i.e., cost) 
 
• needed to compute the matrix A[i]A[i+1]...A[j] = A[i..j] 
 
• The cost is zero when multiplying one matrix 
 

for (i = 1; i <= n; i++) 
 

m[i, i] = 0; 



 

for (len = 2; len <= n; len++){ 
 

// Subsequence lengths 
 

for (i = 1; i <= n - len + 1; i++) { 
 

j = i + len - 1; 
 

m[i, j] = MAXINT; 
 

for (k = i; k <= j - 1; k++) { 
 

cost = m[i, k] + m[k+1, j] + dims[i-1]*dims[k]*dims[j]; 
 

if (cost < m[i, j]) { 
 

m[i, j] = cost; 
 

s[i, j] = k; 
 

• Index of the subsequence split that achieved minimal cost 
 
} 
 

  
} 
 

} 
 

} 
 

} 
 

Example of Matrix Chain Multiplication 
 

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 

x 3, 3 x 12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i. 



 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Let us proceed with working away from the diagonal. We compute the optimal solution for 

the product of 2 matrices. 

 
 

 

 
 

 

 

 
 

 



 
 

 

 

In Dynamic Programming, initialization of every method done by ‘0’.So we initialize it by 

‘0’.It will sort out diagonally. 

 

We have to sort out all the combination but the minimum output combination is taken into 

consideration. 

 

Calculation of Product of 2 matrices: 
 

• m (1,2) = m1 x m2 
 

• 4 x 10 x 10 x 3 
 

• 4 x 10 x 3 = 120 
 
• m (2, 3) = m2 x m3 
 

• 10 x 3 x 3 x 12 
 

• 10 x 3 x 12 = 360 
 
• m (3, 4) = m3 x m4 
 

• 3 x 12 x 12 x 20 
 

• 3 x 12 x 20 = 720 
 
• m (4,5) = m4 x m5 
 

• 12 x 20 x 20 x 7 
 

• 12 x 20 x 7 = 1680 



 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

We initialize the diagonal element with equal i,j value with ‘0’. 
 

After that second diagonal is sorted out and we get all the values corresponded to it 

Now the third diagonal will be solved out in the same way. 

 

Now product of 3 matrices: 

M[1,3]=M1M2M3 

 

• There are two cases by which we can solve this multiplication: ( M1 x M2) + M3, M1+ 

(M2x M3) 

 
• After solving both cases we choose the case in which minimum output is there. 

 
 



 
 

 

 

M [1, 3] =264 
 

As Comparing both output 264 is minimum in both cases so we insert 264 in table and ( M1 x 

M2) + M3 this combination is chosen for the output making. 

 

M[2,4]=M2M3M4 
 

• There are two cases by which we can solve this multiplication: (M2x M3)+M4, 

M2+(M3 x M4) 

 
• After solving both cases we choose the case in which minimum output is there. 

 
 
 

 

 
 

M [2, 4] = 1320 
 
As Comparing both output 1320 is minimum in both cases so we insert 1320 in table and 

M2+(M3 x M4) this combination is chosen for the output making. 

 

M[3,5]=M3 M4 M5 
 

• There are two cases by which we can solve this multiplication: ( M3 x M4) + M5, M3+ ( 

M4xM5) 

 
• After solving both cases we choose the case in which minimum output is there. 

 
 

 

 
 

 

M [3, 5] = 1140 
 

As Comparing both output 1140 is minimum in both cases so we insert 1140 in table and ( 

M3 x M4) + M5this combination is chosen for the output making. 



 
 

 

 
 

 

 
 

 

 

 
 

Now Product of 4 matrices: 
 

M[1,4]=M1 M2M3M4 
 

There are three cases by which we can solve this multiplication: 
 

• ( M1 x M2 x M3) M4 
 

• M1 x(M2 x M3 x M4) 
 

• (M1 xM2) x ( M3 x M4) 
 

After solving these cases we choose the case in which minimum output is there 

 
 

 
 

 

 

 
 

M [1, 4] =1080 
 

As comparing the output of different cases then ‘1080’ is minimum output, so we insert 1080 

in the table and (M1 xM2) x (M3 x M4) combination is taken out in output making, 

 



M[2,5]=M2M3M4M5 
 

There are three cases by which we can solve this multiplication: 
 

• (M2 x M3 x M4)x M5 
 

• M2 x( M3 x M4 x M5) 
 

3.  (M2 x M3)x ( M4 x M5) 
 

After solving these cases we choose the case in which minimum output is there 

 
 

 
 

 

 
 

M [2, 5] = 1350 
 

As comparing the output of different cases then ‘1350’ is minimum output, so we insert 1350 

in the table and M2 x( M3 x M4xM5)combination is taken out in output making. 

 
 

Now Product of 5 matrices: 
 

M[1,5]=M1 M2M3M4M5 
 

There are five cases by which we can solve this multiplication: 
 

• (M1 x M2 xM3 x M4 )x M5 
 

• M1 x( M2 xM3 x M4 xM5) 
 

• (M1 x M2 xM3)x M4 xM5 
 

• M1 x M2x(M3 x M4 xM5) 
 

After solving these cases we choose the case in which minimum output is there 



 
 

 

 
 

 

 
 

 

M [1, 5] = 1344 
 

As comparing the output of different cases then ‘1344’ is minimum output, so we insert 1344 in 

the table and M1 x M2 x(M3 x M4 x M5)combination is taken out in output making. 

 

Final Output is:  

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

So we can get the optimal solution of matrices multiplication…. 
 
 

Multi Stage Graph 
 

Multistage Graph problem is defined as follow: 
 



▪ Multistage graph G = (V, E, W) is a weighted directed graph in which vertices are partitioned into k ≥∈2 disjoint sub∈ sets V 
= {V1, V2, …, Vk} such that if edge (u, v) is present in E then u V i and v Vi+1, 1 ≤ i ≤ k. The goal of multistage graph problem is 
to find minimum cost path from source to destination vertex. 

 

• The input to the algorithm is a k-stage graph, n vertices are indexed in increasing 

order of stages. 

 
• The algorithm operates in the backward direction, i.e. it starts from the last vertex of the graph and proceeds in∈a backward direction∈ to find minimum cost path. 

 

• Minimum cost of vertex j  Vi from vertex r  Vi+1 is defined as, 
 

Cost[j] = min{ c[j, r] + cost[r] } 
 

where, c[j, r] is the weight of edge <j, r> and cost[r] is the cost of moving from end 

vertex to vertex r. 

 

• Algorithm for the multistage graph is described below : 
 

Algorithm for Multistage Graph 
 

Algorithm MULTI_STAGE(G, k, n, p) 
 

• Description: Solve multi-stage problem using dynamic programming 
 
• Input: 
 

• Number of stages in graph G = (V, E) 

c[i, j]:Cost of edge (i, j) 

 

// Output: p[1:k]:Minimum cost path 
 

cost[n] ← 0 
 

for j ← n – 1 to 1 do 

//Let r be a vertex such that (j, r) in E and c[j, r] + cost[r] is minimum 
 

cost[j] ← c[j, r] + cost[r] 
 

π[j] ← r 
 

end 
 

//Find minimum cost path 
 

p[1] ← 1 
 

p[k] ← n 



 

for j ← 2 to k - 1 do 
 

p[j] ← π[p[j - 1]] 
 

end 
 

Complexity Analysis of Multistage Graph 
 

If graph G has |E| edges, then cost computation time would be O(n + |E|). The complexity of 

tracing the minimum cost path would be O(k), k < n. Thus total time complexity of multistage 

graph using dynamic programming would be O(n + |E|). 

 

Example 
 

Example: Find minimum path cost between vertex s and t for following multistage graph 

using dynamic programming. 

 
 

 
 

 

 

 
 

Solution: 
 

Solution to multistage graph using dynamic programming is constructed as, 

Cost[j] = min{c[j, r] + cost[r]} 

 

Here, number of stages k = 5, number of vertices n = 12, source s = 1 and target t = 12 
 

Initialization: 
 

Cost[n] = 0 Cost[12] = 0. 
p[1] = s 

⇒ 
p[1] = 1 

⇒ ⇒ 
p[k] = t p[5] = 12. 

r = t = 12. 



 
 

Stage 4: 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

Stage 3: 
 

Vertex 6 is connected to vertices 9 and 10: 
 

Cost[6] = min{ c[6, 10] + Cost[10], c[6, 9] + Cost[9] } 
 

• min{5 + 2, 6 + 4} = min{7, 10} = 7 

p[6] = 10 

Vertex 7 is connected to vertices 9 and 10: 
 
Cost[7] = min{ c[7, 10] + Cost[10], c[7, 9] + Cost[9] } 
 
• min{3 + 2, 4 + 4} = min{5, 8} = 5 
 

p[7] = 10 
 

Vertex 8 is connected to vertex 10 and 11: 



 

Cost[8] = min{ c[8, 11] + Cost[11], c[8, 10] + Cost[10] } = 

min{6 + 5, 5 + 2} = min{11, 7} = 7 p[8] = 10 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Stage 2: 
 

Vertex 2 is connected to vertices6, 7 and 8: 
 

Cost[2] = min{ c[2, 6] + Cost[6], c[2, 7] + Cost[7], c[2, 8] + Cost[8] } = 

min{4 + 7, 2 + 5, 1 + 7} = min{11, 7, 8} = 7 

 

p[2] = 7 
 

Vertex 3 is connected to vertices 6and 7: 
 

Cost[3] = min{ c[3, 6] + Cost[6], c[3, 7] + Cost[7] } 
 

• min{2 + 7, 7 + 5} = min{9, 12} = 9 

p[3] = 6 



Vertex 4 is connected to vertex 8: Cost[4] 

= c[4, 8] + Cost[8] = 11 + 7 = 18 p[4] = 8 

 
Vertex 5 is connected to vertices 7 and 8: Cost[5] = 

min{ c[5, 7] + Cost[7], c[5, 8] + Cost[8] } 

• min{11 + 5, 8 + 7} = min{16, 15} = 15 p[5] = 8 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Stage 1: 
 

Vertex 1 is connected to vertices 2, 3, 4 and 5: 
 

Cost[1] = min{ c[1, 2] + Cost[2], c[1, 3] + Cost[3], c[1, 4] + Cost[4], c[1, 5] + Cost[5]} 
 

• min{ 9 + 7, 7 + 9, 3 + 18, 2 + 15 } 
 
• min { 16, 16, 21, 17 } = 16 p[1] = 2 
 



Trace the solution: 

p[1] = 2 

 
p[2] = 7 
 
p[7] = 10   

 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

p[10] = 12 
 

Minimum cost path is : 1 – 2 – 7 – 10 – 12 



 

Cost of the path is : 9 + 2 + 3 + 2 = 16 
 

 

 

Optimal Binary Search Tree 
 

• Optimal Binary Search Tree extends the concept of Binary searc tree. Binary Search 

Tree (BST) is a nonlinear data structure which is used in many scientific applications 

for reducing the search time. In BST, left child is smaller than root and right child is 

greater than root. This arrangement simplifies the search procedure. 

 

• Optimal Binary Search Tree (OBST) is very useful in dictionary search. The probability of 

searching is different for different words. OBST has great application in translation. If we 

translate the book from English to German, equivalent words are searched from English 

to German dictionary and replaced in translation. Words are searched same as in binary 

search tree order. 

 

• Binary search tree simply arranges the words in lexicographical order. Words 

like ‘the’, ‘is’, ‘there’ are very frequent words, whereas words 
 

like ‘xylophone’, ‘anthropology’ etc. appears rarely. 
 

• It is not a wise idea to keep less frequent words near root in binary search tree. 

Instead of storing words in binary search tree in lexicographical order, we shall 

arrange them according to their probabilities. This arrangement facilitates few 

searches for frequent words as they would be near the root. Such tree is called 

Optimal Binary Search Tree. 

 

• Consider the sequence of nkeys K = < k1, k2, k3, …, kn> of distinct probability in sorted 

order such that 
 

k1< k2< … <kn. Words between each pair of key lead to unsuccessful search, so for n 

keys, binary search tree contains n + 1 dummy keys di, representing unsuccessful 

searches. 
 

• Two different representation of BST with same five keys {k1, k2, k3, k4, k5} probability is 

shown in following figure 

 
• With n nodes, there exist (2n)!/((n + 1)! * n!) different binary search trees. An 

exhaustive search for optimal binary search tree leads to huge amount of time. 

 



• The goal is to construct a tree which minimizes the total search cost. Such tree is called 

optimal binary search tree. OBST does not claim minimum height. It is also not 

necessary that parent of sub tree has higher priority than its child. 

 

• Dynamic programming can help us to find such optima tree. 

 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Binary search trees with 5 keys 

Mathematical formulation 

 

https://codecrucks.com/dynamic-programming/


• We formulate the OBST with following observations 
 

• Any sub tree in OBST contains keys in sorted order ki…kj, where 1 ≤ i ≤ j ≤ n. 
 

• Sub tree containing keys ki…kj has leaves with dummy keys di-1….dj. 
 

• Suppose kr is the root of sub tree containing keys ki…..kj. So, left sub tree of root kr 

contains keys 
 

ki….kr-1 and right sub tree contain keys kr+1 to kj. Recursively, optimal sub trees are 

constructed from the left and right sub trees of kr. 

 

• Let e[i, j] represents the expected cost of searching OBST. With n keys, our aim is to 

find and minimize e[1, n]. 

 

• Base case occurs when j = i – 1, because we just have the dummy key di-1 for this 

case. Expected search cost for this case would be e[i, j] = e[i, i – 1] = qi-1. 

 

• For the case j ≥ i, we have to select any key kr from ki…kj as a root of the tree. 
 

• With kr as a root key and sub tree ki…kj, sum of probability is defined as 
 

 
 

   

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
(Actual key starts at index 1 and dummy key starts at index 0) 

 

Thus, a recursive formula for forming the OBST is stated below : 



 
 

 

 
 

 

 
 

 

 
 

 

e[i, j] gives the expected cost in the optimal binary search tree. 
 

Algorithm for Optimal Binary Search Tree 
 

The algorithm for optimal binary search tree is specified below : 
 

Algorithm OBST(p, q, n) 
 

• e[1…n+1, 0…n ] : Optimal sub tree 
 
• w[1…n+1, 0…n] : Sum of probability 
 
• root[1…n, 1…n] : Used to construct OBST 
 

 

 

for i ← 1 to n + 1 do 
 

e[i, i – 1] ← qi – 1 
 

w[i, i – 1] ← qi – 1 
 

end 
 

 
 

for m ← 1 to n do 
 

for i ← 1 to n – m + 1 do 
 

j ← i + m – 1 
 

e[i, j] ← ∞ 
 



w[i, j] ← w[i, j – 1] + pj + qj 
 

for r ← i to j do 
 

t ← e[i, r – 1] + e[r + 1, j] + w[i, j] 
 

if t < e[i, j] then 
 

e[i, j] ← t 
 

root[i, j] ← r 
 

end 
 

end 
 

end 
 

end 
 

return (e, root) 
 

Complexity Analysis of Optimal Binary Search Tree 
 

It is very simple to derive the complexity of this approach from the above algorithm. It uses 

three nested loops. Statements in the innermost loop run in Q(1) time. The running time of 

the algorithm is computed as 

 
 
 

 

 
 

 

 

 
 

 

 



 
 

 

 

 

Thus, the OBST algorithm runs in cubic time 
 

Example 
 

Problem: Let p (1 : 3) = (0.5, 0.1, 0.05) q(0 : 3) = (0.15, 0.1, 0.05, 0.05) Compute and 

construct OBST for above values using Dynamic approach. 

 

Solution: 
 

Here, given that 
 

i 0 1 2 3 

     

pi  0.5 0.1 0.05 

     

qi 0.15 0.1 0.05 0.05 

 
 

Recursive formula to solve OBST problem is 

 
 
 

 

 

 
 

 

 
 

 

 

Where, 

 
 

 

 



 
 

 

 

 
 

 

Initially, 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

   

 
 

 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

   

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

Now, we will compute e[i, j] 
 

Initially, 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

e[1, 0] = q0 = 0.15 ( j = i – 
1) 

e[2, 1] = q1 = 0.1 (∵ j = i – 1) 

    
∵ 
 

e[3, 2] = q2 = 0.05 
(∵ 

j = i – 
1) 

e[4, 3] = q3 = 0.05 
(∵ 

j = i – 
1) 

  
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

e[1, 1] = min { e[1, 0] + e[2, 1] + w(1, 1) } 



 

=  min { 0.15 + 0.1 + 0.75 } = 1.0 
 

e[2, 2] =  min { e[2, 1] + e[3, 2] + w(2, 2) } 
 

=  min { 0.1 + 0.05 + 0.25 } = 0.4 
 

e[3, 3] =  min { e[3, 2] + e[4, 3] + w(3, 3) } 
 

= min { 0.05 + 0.05 + 0.15 } = 0.25 

 
 
 

 

 
 

 

 
 

 

 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

   

 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

e[1, 3] is minimum for r = 1, so r[1, 3] = 1 
 

e[2, 3] is minimum for r = 2, so r[2, 3] = 2 
 

e[1, 2] is minimum for r = 1, so r[1, 2] = 1 
 

e[3, 3] is minimum for r = 3, so r[3, 3] = 3 
 

e[2, 2] is minimum for r = 2, so r[2, 2] = 2 

 
 
 

 

 
 

 

 

 
 

 

 

e[1, 1] is minimum for r = 1, so r[1, 1] = 1 
 

Let us now construct OBST for given data. 
 

r[1, 3] =  1, so k1 will be at the root. 
 



k2….3 are on right side of k1 

 

r[2, 3] = 2, So k2 will be the root of this sub tree. 
 

k3 will be on the right of k2. 
 

Thus, finally, we get. 

 
 

 
 

 

 

 

 
 

 

 
 

 

 

 
 

Greedy Technique 
 

Activity Selection Problem 
 

Activity Selection problem is a approach of selecting non-conflicting tasks based on start and 

end time and can be solved in O(N logN) time using a simple greedy approach. Modifications of 

this problem are complex and interesting which we will explore as well. Suprising, if we use a 

Dynamic Programming approach, the time complexity will be O(N^3) that is lower 

performance. 
 

The problem statement for Activity Selection is that "Given a set of n activities with their start 

and finish times, we need to select maximum number of non-conflicting activities that can be 

performed by a single person, given that the person can handle only one activity at a time." The 

Activity Selection problem follows Greedy approach i.e. at every step, we can make a choice 

that looks best at the moment to get the optimal solution of the complete problem. 
 

Our objective is to complete maximum number of activities. So, choosing the activity which is 

going to finish first will leave us maximum time to adjust the later activities. This is the intuition 



that greedily choosing the activity with earliest finish time will give us an optimal solution. By 

induction on the number of choices made, making the greedy choice at every step produces an 

optimal solution, so we chose the activity which finishes first. If we sort elements based on 

their starting time, the activity with least starting time could take the maximum duration for 

completion, therefore we won't be able to maximise number of activities. 
 

Algorithm 
 

The algorithm of Activity Selection is as follows: 
 

Activity-Selection(Activity, start, finish) 
 

Sort Activity by finish times stored in finish 
 

Selected = {Activity[1]} 
 

n = Activity.length 
 

j = 1 
 

for i = 2 to n: 
 

if start[i] ≥ finish[j]: 
 

Selected = Selected U {Activity[i]} 
 

j = i 
 

return Selected 
 

Complexity 
 

Time Complexity: 
 

When activities are sorted by their finish time: O(N) 
 

When activities are not sorted by their finish time, the time complexity is O(N log N) due to 

complexity of sorting 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

In this example, we take the start and finish time of activities as follows: 
 

start = [1, 3, 2, 0, 5, 8, 11] 
 

finish = [3, 4, 5, 7, 9, 10, 12] 
 

Sorted by their finish time, the activity 0 gets selected. As the activity 1 has starting time which 

is equal to the finish time of activity 0, it gets selected. Activities 2 and 3 have smaller starting 

time than finish time of activity 1, so they get rejected. Based on similar comparisons, activities 

4 and 6 also get selected, whereas activity 5 gets rejected. In this example, in all the activities 

0, 1, 4 and 6 get selected, while others get rejected. 
 

Optimal Merge Pattern 
 

Merge a set of sorted files of different length into a single sorted file. We need to find an 

optimal solution, where the resultant file will be generated in minimum time. 

 

If the number of sorted files are given, there are many ways to merge them into a single 

sorted file. This merge can be performed pair wise. Hence, this type of merging is called as 

2-way merge patterns. 
 



As, different pairings require different amounts of time, in this strategy we want to 

determine an optimal way of merging many files together. At each step, two shortest 

sequences are merged. 

 

To merge a p-record file and a q-record file requires possibly p + q record moves, the 

obvious choice being, merge the two smallest files together at each step. 

 

Two-way merge patterns can be represented by binary merge trees. Let us consider a set of n 

sorted files {f1, f2, f3, …, fn}. Initially, each element of this is considered as a single node binary 

tree. To find this optimal solution, the following algorithm is used. 
 

Algorithm: TREE (n) 
 

for i := 1 to n – 1 do 
 

declare new node 
 

node.leftchild := least (list) 
 

node.rightchild := least (list) 
 

node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight) 
 

insert (list, node); 
 

return least (list); 
 

At the end of this algorithm, the weight of the root node represents the optimal cost. 

Example 

 

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of 

elements respectively. 

 

If merge operations are performed according to the provided sequence, then 

M1 = merge f1 and f2 => 20 + 30 = 50 

 

M2 = merge M1 and f3 => 50 + 10 = 60 
 

M3 = merge M2 and f4 => 60 + 5 = 65 
 

M4 = merge M3 and f5 => 65 + 30 = 95 
 



 

Hence, the total number of operations is 
 

50+60+65+95=270 
 

Now, the question arises is there any better solution? 
 

Sorting the numbers according to their size in an ascending order, we get the following 

sequence − 

 

f4, f3, f1, f2, f5 

 

Hence, merge operations can be performed on this sequence 

M1 = merge f4 and f3 => 5 + 10 = 15 

 

M2 = merge M1 and f1 => 15 + 20 = 35 
 

M3 = merge M2 and f2 => 35 + 30 = 65 
 

M4 = merge M3 and f5 => 65 + 30 = 95 
 

Therefore, the total number of operations is 
 

15+35+65+95=210 
 

Obviously, this is better than the previous one. 
 

In this context, we are now going to solve the problem using this algorithm. 

Initial Set 

 
 

 
 

 

 

Step 1 

 
 

 



 
 

 

 

 
 

 

 

Step 2 

 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

Step 3 

 
 



 
 

 

 

 
 

 

 
 

 

 

Step 4 

 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons. 
 

Huffman Tree 
 

Huffman coding provides codes to characters such that the length of the code depends on the 

relative frequency or weight of the corresponding character. Huffman codes are of variable-

length, and without any prefix (that means no code is a prefix of any other). Any prefix-free 



binary code can be displayed or visualized as a binary tree with the encoded characters stored 

at the leaves. 
 

Huffman tree or Huffman coding tree defines as a full binary tree in which each leaf of the tree 

corresponds to a letter in the given alphabet. 

 

The Huffman tree is treated as the binary tree associated with minimum external path weight 

that means, the one associated with the minimum sum of weighted path lengths for the given 

set of leaves. So the goal is to construct a tree with the minimum external path weight. 
 

An example is given below- 
 

Letter frequency table 
 
 

Letter 
  
 

z 
  
 

k 
  
 

m 
  
 

c 
  
 

u 
  
 

d 
  
 

l 
  
 

e 
 

   
 
 

 

 



 

Frequency 
  
 

 

 

 

2 
  
 
 

 

 

7 
  
 

 
 

 

24 
  
 

 

 
 

32 
  
 

 

 

 

37 
  
 
 

 

 

42 
  
 

 
 

 

42 
  
 

 

 
 



120 
 
 

 

 

 
 

Huffman code 
 

Letter Freq Code Bits 

    

e 120 0 1 

    

d 42 101 3 

    

l 42 110 3 

    

u 37 100 3 

    

c 32 1110 4 

    

m 24 11111 5 

    

k 7 111101 6 

    

z 2 111100 6 

    

 
 
 

 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

The Huffman tree (for the above example) is given below - 
 

Algorithm Huffman (c) 
 

{ 
 
 

n= |c| 
 

Q = c 
 

for i<-1 to n-1 
 

do 
 

{ 
 

temp <- get node () 
 

left (temp] Get_min (Q) right [temp] Get Min (Q) 
 

a = left [templ b = right [temp] 
 

F [temp]<- f[a] + [b] 
 

insert (Q, temp) 
 

} 
 



return Get_min (0) 
 

} 
 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

 
 

 

 

 

UNIT 4 
 

Backtracking 
 

N queen Problem 
 

N - Queens problem is to place n - queens in such a manner on an n x n chessboard that no queens 

attack each other by being in the same row, column or diagonal. 

 

It can be seen that for n =1, the problem has a trivial solution, and no solution exists for n =2 and n 

=3. So first we will consider the 4 queens problem and then generate it to n - queens problem. 

 

Given a 4 x 4 chessboard and number the rows and column of the chessboard 1 through 4. 



 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

Since, we have to place 4 queens such as q1 q2 q3 and q4 on the chessboard, such that no two queens 

attack each other. In such a conditional each queen must be placed on a different row, i.e., we put 

queen "i" on row "i." 

 

Now, we place queen q1 in the very first acceptable position (1, 1). Next, we put queen q2 so that both 

these queens do not attack each other. We find that if we place q2 in column 1 and 2, then the dead end 

is encountered. Thus the first acceptable position for q2 in column 3, i.e. (2, 3) but then no position is left 

for placing queen 'q3' safely. So we backtrack one step and place the queen 'q2' in (2, 4), the next best 

possible solution. Then we obtain the position for placing 'q3' which is (3, 2). But later this position also 

leads to a dead end, and no place is found where 'q4' can be placed safely. Then we have to backtrack till 

'q1' and place it to (1, 2) and then all other queens are placed safely by moving q2 to (2, 4), q3 to (3, 1) 

and q4 to (4, 3). That is, we get the solution (2, 4, 1, 3). This is one possible solution for the 4-queens 

problem. For another possible solution, the whole method is repeated for all partial solutions. The other 

solutions for 4 - queens problems is (3, 1, 4, 2) i.e.   

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

The implicit tree for 4 - queen problem for a solution (2, 4, 1, 3) is as follows: 

 
 

 

 
 

 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Fig shows the complete state space for 4 - queens problem. But we can use backtracking method to 

generate the necessary node and stop if the next node violates the rule, i.e., if two queens are attacking.  

 
 

 
 

 

 
 

 

 

 
 

 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

4 - Queens solution space with nodes numbered in DFS 
 

It can be seen that all the solutions to the 4 queens problem can be represented as 4 - tuples (x1, x2, x3, 

x4) where xi represents the column on which queen "qi" is placed. 

 

One possible solution for 8 queens problem is shown in fig: 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

• Thus, the solution for 8 -queen problem for (4, 6, 8, 2, 7, 1, 3, 5). 
 

• If two queens are placed at position (i, j) and (k, l). 
 

• Then they are on same diagonal only if (i - j) = k - l or i + j = k + l. 



 
• The first equation implies that j - l = i - k. 

 
• The second equation implies that j - l = k - i. 

 
• Therefore, two queens lie on the duplicate diagonal if and only if |j-l|=|i-k| 

 
Place (k, i) returns a Boolean value that is true if the kth queen can be placed in column i. It tests both 

whether i is distinct from all previous costs x1, x2,....xk-1 and whether there is no other queen on the same 

 

diagonal. 
 

Using place, we give a precise solution to then n- queens problem. 
 

1. Place (k, i)  
2. {   

• For j ← 1 to k - 1 
 

• do if (x [j] = i) 
 

• or (Abs x [j]) - i) = (Abs (j - k)) 
 

• then return false; 
 

• return true; 
 

• } 
 

Place (k, i) return true if a queen can be placed in the kth row and ith column otherwise return is false. 
 

x [] is a global array whose final k - 1 values have been set. Abs (r) returns the absolute value of r. 
 

• N - Queens (k, n) 
 

• { 
 

• For i ← 1 to n 
 

• do if Place (k, i) then 
 

• { 
 

• x [k] ← i; 
 

• if (k ==n) then 
 

• write (x [1....n)); 
 



• else 
 

• N - Queens (k + 1, n); 
 

• } 
 

• } 
 

 

Hamiltonian Circuit 
 

The Hamiltonian cycle is the cycle in the graph which visits all the vertices in graph exactly 

once and terminates at the starting node. It may not include all the edges 

 

• The Hamiltonian cycle problem is the problem of finding a Hamiltonian cycle in a graph if there 

exists any such cycle. 

 
• The input to the problem is an undirected, connected graph. For the graph shown in Figure 

(a), a path A – B – E – D – C – A forms a Hamiltonian cycle. It visits all the vertices exactly 

once, but does not visit the edges <B, D>. 

 
 
 
 
 
 

• The Hamiltonian cycle problem is also both, decision problem and an optimization 

problem. A decision problem is stated as, “Given a path, is it a Hamiltonian cycle of the 

graph?”. 

 
• The optimization problem is stated as, “Given graph G, find the Hamiltonian cycle for the 

graph.” 
 

• We can define the constraint for the Hamiltonian cycle problem as follows: 
 

 

▪ In any path, vertex i and (i + 1) must be adjacent. 
 

• 1st and (n – 1)th vertex must be adjacent (nth of cycle is the initial vertex itself). 
 

• Vertex i must not appear in the first (i – 1) vertices of any path. 



 
• With the adjacency matrix representation of the graph, the adjacency of two vertices can be 

verified in constant time. 

 

Algorithm 
 

HAMILTONIAN (i) 
 

• Description : Solve Hamiltonian cycle problem using backtracking. 
 
• Input : Undirected, connected graph G = <V, E> and initial vertex i 
 
• Output : Hamiltonian cycle 
 

if 
 

FEASIBLE(i) 
 

then 
 

if 
 

(i == n - 1) 
 

then 
 

Print V[0… n – 1] 
 

else 
 

j ← 2 
 

while 
 

(j ≤ n) 
 

do 
 

V[i] ← j 
 

HAMILTONIAN(i + 1) 
 

j ← j + 1 
 

end 
 

end 
 

end 



 

function 
 

FEASIBLE(i) 
 

flag ← 1 
 

for 
 

j ← 1 to i – 1 
 

do 
 

if 
 

Adjacent(Vi, Vj) 
 

then 
 

flag ← 0 
 

end 
 

end 
 

if 
 

Adjacent (Vi, Vi-1) 
 

then 
 

flag ← 1 

else  
flag ← 0 

 

end 
 

return 
 

flag 
 

Complexity Analysis 
 

Looking at the state space graph, in worst case, total number of nodes in tree would 

be, T(n) = 1 + (n – 1) + (n – 1)2 + (n – 1)3 + … + (n – 1)n – 1 =frac(n−1)n–1n–2 

 

T(n) = O(nn). Thus, the Hamiltonian cycle algorithm runs in exponential time. 

 



Example: Find the Hamiltonian cycle by using the backtracking approach for a given graph. 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

The backtracking approach uses a state-space tree to check if there exists a Hamiltonian cycle in the 
graph. 
 

Figure (g) shows the simulation of the Hamiltonian cycle algorithm. For simplicity, we have not explored 
all 
 

possible paths, the concept is self-explanatory. It is not possible to include all the paths in the graph, so 
few 
 
of the successful and unsuccessful paths are traced in the graph. Black nodes indicate the Hamiltonian cycle. 
 

Subset Sum Problem 
 

 

Sum of Subsets Problem: Given a set of positive integers, find the combination of numbers that sum to 

given value M. 
 

Sum of subsets problem is analogous to the knapsack problem. The Knapsack Problem tries to fill 

the knapsack using a given set of items to maximize the profit. Items are selected in such a way that 

the total weight in the knapsack does not exceed the capacity of the knapsack. The inequality 

condition in the knapsack problem is replaced by equality in the sum of subsets problem. 

 

Given the set of n positive integers, W = {w1, w2, …, wn}, and given a positive integer M, the sum of 

the subset problem can be formulated as follows (where wi and M correspond to item weights and 

knapsack capacity in the knapsack problem): 

 
 

 

Where, 

 
 

https://codecrucks.com/binary-knapsack-problem-using-greedy-algorithm/


 

Numbers are sorted in ascending order, such that w1 < w2 < w3 < …. < wn. The solution is often 
represented 
 

using the solution vector X. If the ith item is included, set xi to 1 else set it to 0. In each iteration, one 

item is tested. If the inclusion of an item does not violet the constraint of the problem, add it. 

Otherwise, backtrack, remove the previously added item, and continue the same procedure for all 

remaining items. The solution is easily described by the state space tree. Each left edge denotes the 

inclusion of wi and the right edge denotes the exclusion of wi. Any path from the root to the leaf forms 

a subset. A state-space tree for n = 3 is demonstrated in Fig. (a). 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

Fig. (a): State space tree for n = 3 
 

Algorithm for Sum of subsets 
 

The algorithm for solving the sum of subsets problem using recursion is stated below: 
 



 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 



 
 

Examples 

 
 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 



 
 

 

 

 
 

Graph Colouring 

 
In this problem, an undirected graph is given. There is also provided m colors. The problem is to find 

if it is possible to assign nodes with m different colors, such that no two adjacent vertices of the 

graph are of the same colors. If the solution exists, then display which color is assigned on which 

vertex. 

 
Starting from vertex 0, we will try to assign colors one by one to different nodes. But before assigning, 
we 

 
have to check whether the color is safe or not. A color is not safe whether adjacent vertices are 
containing 

 
the same color. 

 
Input and Output 

 
Input: 

 
The adjacency matrix of a graph G(V, E) and an integer m, which indicates the maximum number of 

colors that can be used. 

 
 
 
 
 
 
 
 
 
 
Let the maximum color m = 3. 

 



Output: 

 
This algorithm will return which node will be assigned with which color. If the solution is not possible, 

it will return false. 

 
For this input the assigned colors are: 

 
Node 0 -> color 1 

 
Node 1 -> color 2 

 
Node 2 -> color 3 

 
Node 3 -> color 2 

 
 
 
 
 
 
 
 
 
Algorithm 

 
isValid(vertex, colorList, col) 

 
Input − Vertex, colorList to check, and color, which is trying to assign. 

 
Output − True if the color assigning is valid, otherwise false. 

 
Begin 

 
for all vertices v of the graph, do 

 
if there is an edge between v and i, and col = colorList[i], 

then return false 

 
done 

 



return true 

 
End 

 

graphColoring(colors, colorList, vertex) 
 

Input − Most possible colors, the list for which vertices are colored with which color, and the starting 
vertex. 
 

Output − True, when colors are assigned, otherwise false. 
 

Begin 
 

if all vertices are checked, then 
 

return true 
 

for all colors col from available colors, do 
 

if isValid(vertex, color, col), then 
 

add col to the colorList for vertex 
 

if graphColoring(colors, colorList, vertex+1) = true, 

then return true 
 

remove color for vertex 
 

done  
 

return false 
 

 
 

 



 
 

 

 

 
 

 

 
 

End 
 

Branch and Bound 
 

Solving 15 puzzle Problem (LCBB) 
 

The problem cinsist of 15 numbered (0-15) tiles on a square box with 16 tiles(one tile is blank or 

empty). The objective of this problem is to change the arrangement of initial node to goal node by 

using series of legal moves. 

 

The Initial and Goal node arrangement is shown by following figure. 
 

 

 
 

 

1 2 4 15 

    

2  5 12 

    

7 6 11 14 

    

8 9 10 13 

    

 Initial Arrangement 

 
 

1  2 3 4 

     

5  6 7 8 

     

9  10 11 12 

     

13  14 15  

     

 Final Arrangement  
 
 



 

In initial node four moves are possible. User can move any one of the tile like 2,or 3, or 5, or 6 to the 

empty tile. From this we have four possibilities to move from initial node. 

 

The legal moves are for adjacent tile number is left, right, up, down, ones at a time. 
 

Each and every move creates a new arrangement, and this arrangement is called state of puzzle 

problem. By using different states, a state space tree diagram is created, in which edges are labeled 

according to the direction in which the empty space moves. 

 

The state space tree is very large because it can be 16! Different arrangements. 
 

In state space tree, nodes are numbered as per the level. In each level we must calculate the value 
 

or cost of each node by using given formula: 
 

C(x)=f(x)+g(x), 
 

f(x) is length of path from root or initial node to node x, 
 

g(x) is estimated length of path from x downward to the goal node. Number of non blank tile not in 

their correct position. 

 

C(x)< Infinity.(initially set bound). 
 

Each time node with smallest cost is selected for further expansion towards goal node. This node 

become the e-node. 

 

State Space tree with node cost is shown in diagram. 



 
 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 



 
 

 

 

Assignment Problem 
 

Problem Statement 
 

Let’s first define a job assignment problem. In a standard version of a job assignment problem, there 

can be jobs and workers. To keep it simple, we’re taking jobs and workers in our example: 

 
 

 

 

 
 

 

 
 

 

We can assign any of the available jobs to any worker with the condition that if a job is assigned to a 

worker, the other workers can’t take that particular job. We should also notice that each job has some 

cost associated with it, and it differs from one worker to another. 

 

Here the main aim is to complete all the jobs by assigning one job to each worker in such a way that 

the sum of the cost of all the jobs should be minimized. 

 

Branch and Bound Algorithm Pseudocode 
 

Now let’s discuss how to solve the job assignment problem using a branch and bound algorithm. 
 

Let’s see the pseudocode first: 



 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

Here, is the input cost matrix that contains information like the number of available jobs, a list of 

available workers, and the associated cost for each job. The function MinCost() maintains a list of active 

nodes. The function Leastcost() calculates the minimum cost of the active node at each level of the tree. 

After finding the node with minimum cost, we remove the node from the list of active nodes and return 

it. 

 

We’re using the add() function in the pseudocode, which calculates the cost of a particular node and 

adds it to the list of active nodes. 

 



In the search space tree, each node contains some information, such as cost, a total number of jobs, as 

well as a total number of workers. 

 

Now let’s run the algorithm on the sample example we’ve created:   

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 



 
 

 

Advantages 
 
In a branch and bound algorithm, we don’t explore all the nodes in the tree. That’s why the time 

complexity of the branch and bound algorithm is less when compared with other algorithms. 

 

If the problem is not large and if we can do the branching in a reasonable amount of time, it finds an 

optimal solution for a given problem. 

 

The branch and bound algorithm find a minimal path to reach the optimal solution for a given 

problem. It doesn’t repeat nodes while exploring the tree. Disadvantages 

 

The branch and bound algorithm are time-consuming. Depending on the size of the given problem, 

the number of nodes in the tree can be too large in the worst case. 

 

Knapsack Problem using branch and bound 
 

Problem Statement 
 
We are a given a set of n objects which have each have a value vi and a weight wi. The objective of the 0/1 

Knapsack problem is to find a subset of objects such that the total value is maximized, and 

 
 

 

 

 
 

 

 
 

 

 
 



 
 

 

 

 
 

 

the sum of weights of the objects does not exceed a given threshold W. An important condition here is 

that one can either take the entire object or leave it. It is not possible to take a fraction of the object. 

 

Consider an example where n = 4, and the values are given by {10, 12, 12, 18}and the weights given by 

{2, 4, 6, 9}. The maximum weight is given by W = 15. Here, the solution to the problem will be 

including the first, third and the fourth objects. 

 

 

Here, the procedure to solve the problem is as follows are: 
 

Calculate the cost function and the Upper bound for the two children of each node. Here, 

the (i + 1)th level indicates whether the ith object is to be included or not. 

If the cost function for a given node is greater than the upper bound, then the node need not be 

explored further. Hence, we can kill this node. Otherwise, calculate the upper bound for this 

node. If this value is less than U, then replace the value of U with this value. Then, kill all 

unexplored nodes which have cost function greater than this value. 

 

The next node to be checked after reaching all nodes in a particular level will be the one with 

the least cost function value among the unexplored nodes. 

 

While including an object, one needs to check whether the adding the object crossed the 

threshold. If it does, one has reached the terminal point in that branch, and all the 

succeeding objects will not be included. 

 

 
 

 

Time and Space Complexity 
 

Even though this method is more efficient than the other solutions to this problem, its worst case time 

complexity is still given by O(2n ), in cases where the entire tree has to be explored. However, in its best 

case, only one path through the tree will have to explored, and hence its best case time complexity is 

given by O(n). Since this method requires the creation of the state space tree, itsspace complexity will 
also be exponential. 
 

Solving an Example 
 

Consider the problem with n =4, V = {10, 10, 12, 18}, w = {2, 4, 6, 9} and W = 15. Here, we calculate 
the initital upper bound to be U = 10 + 10 + 12 = 32. Note that the 4th object cannot be included here, 



since that would exceed W. For the cost, we add 3/9 th of the final value, and hence the cost function 

is 38. Remember to negate the values after calculation before comparison. 
 

After calculating the cost at each node, kill nodes that do not need exploring. Hence, the final state 

space tree will be as follows (Here, the number of the node denotes the order in which the state space 

tree was explored): 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

Note here that node 3 and node 5 have been killed after updating U at node 7. Also, node 6 is not 

explored further, since adding any more weight exceeds the threshold. At the end, only nodes 6 and 8 

remain. Since the value of U is less for node 8, we select this node. Hence the solution is {1, 1, 0, 1}, and 

we can see here that the total weight is exactly equal to the threshold value in this case. 

 

Travelling salesman problem 
 

• Travelling Salesman Problem (TSP) is an interesting problem. Problem is defined as “given n 

cities and distance between each pair of cities, find out the path which visits each city exactly 

once and come back to starting city, with the constraint of minimizing the travelling distance.” 

 
• TSP has many practical applications. It is used in network design, and transportation route 

design. The objective is to minimize the distance. We can start tour from any random city 

 

and visit other cities in any order. With n cities, n! different permutations are possible. 
 

Exploring all paths using brute force attacks may not be useful in real life applications. 
 

LCBB using Static State Space Tree for Travelling Salseman Problem 
 

• Branch and bound HYPERLINK "https://codecrucks.com/branch-and-bound-the-dummies-

guide/" HYPERLINK "https://codecrucks.com/branch-and-bound-the-dummies-guide/" 

HYPERLINK "https://codecrucks.com/branch-and-bound-the-dummies-guide/" is an 

effective way to find better, if not best, solution in quick time by pruning some of the 

unnecessary branches of search tree. 

• It works as follow: 
 

Consider directed weighted graph G = (V, E, W), where node represents cities and weighted 

directed edges represents direction and distance between two cities. 

 

https://codecrucks.com/branch-and-bound-the-dummies-guide/
https://codecrucks.com/branch-and-bound-the-dummies-guide/
https://codecrucks.com/branch-and-bound-the-dummies-guide/


• Initially, graph is represented by cost matrix C, where 
 

Cij = cost of edge, if there is a direct path from city i to city j Cij = 

∞, if there is no direct path from city i to city j. 

 

• Convert cost matrix to reduced matrix by subtracting minimum values from appropriate rows 

and columns, such that each row and column contains at least one zero entry. 

 

• Find cost of reduced matrix. Cost is given by summation of subtracted amount from the cost 

matrix to convert it in to reduce matrix. 

• Prepare state space tree for the reduce matrix 
 
• Find least cost valued node A (i.e. E-node), by computing reduced cost node matrix with every 

remaining node. 

 
• If <i, j> edge is to be included, then do following : 
 

• Set all values in row i and all values in column j of A to ∞ 
 
• Set A[j, 1] = ∞ 
 
• Reduce A again, except rows and columns having all ∞ entries. 
 

• Compute the cost of newly created reduced matrix as, 
 

Cost =  L + Cost(i, j) + r 
 

Where, L is cost of original reduced cost matrix and r is A[i, j]. 
 

• If all nodes are not visited then go to step 4. 

Reduction procedure is described below : 

Raw Reduction: 
 
Matrix M is called reduced matrix if each of its row and column has at least one zero entry or entire 

row or entire column has ∞ value. Let M represents the distance matrix of 5 cities. M can be 

reduced as follow: 

 

MRowRed =  {Mij – min {Mij | 1 ≤ j ≤ n, and Mij < ∞ }} 
 

Consider the following distance matrix: 

 
 



 
 

 

 

 
 

 

 
 

Find the minimum element from each row and subtract it from each cell of matrix. 

 
 

 

 

 
 

 

 
 

 

 
 

 

Reduced matrix would be: 

 
 

 

 

 
 

 

 
 

 

 

Row reduction cost is the summation of all the values subtracted from each rows: 
 

Row reduction cost (M) = 10 + 2 + 2 + 3 + 4 = 21 



 

Column reduction: 
 

Matrix MRowRed is row reduced but not the column reduced. Matrix is called column reduced if each 

of its column has at least one zero entry or all ∞ entries. 

 
 

 

 

MColRed = {Mji – min {Mji | 1 ≤ j ≤ n, and Mji < ∞ }} 
 

To reduced above matrix, we will find the minimum element from each column and subtract it from 

each cell of matrix. 

 
 

 
 

 

 

 
 

 

 

Column reduced matrix MColRed would be: 

 
 

 

 
 

 

 

 
 

 



 
 

 

Each row and column of MColRed has at least one zero entry, so this matrix is reduced matrix. 

Column reduction cost (M) = 1 + 0 + 3 + 0 + 0 = 4 

 

State space tree for 5 city problem is depicted in Fig. 6.6.1. Number within circle indicates the order in 

which the node is generated, and number of edge indicates the city being visited. 

 
 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Example 
 

Example: Find the solution of following travelling salesman problem using branch and bound 

method. 

 



Solution: 
 

• The procedure for dynamic reduction is as follow: 
 

• Draw state space tree with optimal reduction cost at root node. 
 

• Derive cost of path from node i to j by setting all entries in ith row and jth column as ∞. 

Set M[j][i] = ∞ 
• Cost of corresponding node N for path i to j is summation of optimal cost + reduction cost + 

M[j][i] 

• After exploring all nodes at level i, set node with minimum cost as E node and repeat the 

procedure until all nodes are visited. 

 
• Given matrix is not reduced. In order to find reduced matrix of it, we will first find the row 

reduced matrix followed by column reduced matrix if needed. We can find row reduced 

matrix by subtracting minimum element of each row from each element of corresponding 

row. Procedure is described below: 

 
• Reduce above cost matrix by subtracting minimum value from each row and column. 

 

 

 
 
 

 

 
 

 

 

 
 

 

M‘1 
 
 

is not reduced matrix. Reduce it subtracting minimum value from corresponding column. Doing this we 

get, 



 
 

 

 
 

 

 
 

  
 

Cost of M1 = C(1) 
 

• Row reduction cost + Column reduction cost 
 
• (10+2+2+3+4)+(1+3)=25 
 

This means all tours in graph has length at least 25. This is the optimal cost of the path. 

State space tree 

 
 

 

 
 

 

 
 

 

 
 

 

Let us find cost of edge from node 1 to 2, 3, 4, 5. 
 

Select edge 1-2: 
 

Set M1 [1] [ ] = M1 [ ] [2] = ∞ 
 

Set M1 [2] [1] = ∞ 



 

Reduce the resultant matrix if required. 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

M2 is already reduced. 
 

Cost of node 2 : 
 

C(2) = C(1) + Reduction cost + M1 [1] [2] 
 

• 25+0+10=35 
 
Select edge 1-3 
 
Set M1 [1][ ] = M1 [ ] [3] = ∞ Set 

M1 [3][1] = ∞ 

 
Reduce the resultant matrix if required. 

 
 

 



 
 

 

 

 
 

 

 
 

 

Cost of node 3: 
 

C(3) = C(1) + Reduction cost + M1[1] [3] 
 

=25+11+17=53 
 

 

Select edge 1-4: 
 

Set M1 [1][ ] = M1[ ][4] = ∞ 
 

Set M1 [4][1] = ∞ 
 

Reduce resultant matrix if required. 

 
 

 

 

 
 

 

 
 

 

 
 

Matrix M4 is already reduced. 
 

Cost of node 4: 
 

C(4) = C(1) + Reduction cost + M1 [1] [4] 
 



• 25+0+0=25 

Select edge 1-5: 

 
Set M1 [1] [ ] = M1 [ ] [5] = ∞ 

Set M1 [5] [1] = ∞ 

 
Reduce the resultant matrix if required. 

 
 

 
 

 

 
 

 

 
 

 

Cost of node 5: 
 

C(5) = C(1) + reduction cost + M1 [1] [5] 
 

• 25+5+1=31 
 
State space diagram: 

 
 
 

 

 

 
 

 

 
 

 



Node 4 has minimum cost for path 1-4. We can go to vertex 2, 3 or 5. Let’s explore all three nodes. 

Select path 1-4-2 : (Add edge 4-2) 

 

Set M4 [1] [] = M4[4][]=M4[][2]=∞ 

Set M4 [2] [1] =  ∞ 

Reduce resultant matrix if required. 

 
 
 

 

 
 

 

 

 
 
 

 

 

Matrix M6 is already reduced. 
 

Cost of node 6: 
 

C(6) = C(4) + Reduction cost + M4 [4] [2] 
 

= 25+0+3 = 28 

Select edge 4-3 (Path 1-4-3): 
Set M4 [1] [ ] = M4[4][]=M4[][3]=∞ 

Set M [3][1] = ∞ 

Reduce the resultant matrix if required. 

 
 
 

 

 
 

 



 
 

 

 

 
 

M‘7 
 

is not reduced. Reduce it by subtracting 11 from column 1. 

 
 
 

 

 
 

 

 
 

 

Cost of node 7: 
 

C(7) = C(4) + Reduction cost + M4 [4] [3] 
 

• 25+2+11+12=50 
 
Select edge 4-5 (Path 1-4-5): 

 
 
 

 

 
 

 

 

 
 

 



 
 

 

 

Matrix M8 is reduced. 
 

Cost of node 8: 
 

C(8) = C(4) + Reduction cost + M4 [4][5] 
 

• 25+11+0=36 
 
State space tree 
 

 

 
 
Path 1-4-2 leads to minimum cost. Let’s find the cost for two possible paths. 

 
 
 

 

 
 

 

 

 
 

 

 
 

 

 

Add edge 2-3 (Path 1-4-2-3): 
 

Set M6 [1][ ]  =  M6 [4][ ] = M6 [2][ ] 
 

=  M6 [][3] = ∞ 
 

Set M6 [3][1]  =  ∞ 
 



Reduce resultant matrix if required. 

 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Cost of node 9: 
 

C(9) = C(6) + Reduction cost + M6 [2][3] 
 



• 28+11+2+11=52 Add edge 2-

5 (Path 1-4-2-5): 

 
Set M6 [1][ ] = M6 [4][ ] = M6 [2][ ] = M6 [ ][5] = ∞ Set 

M6 [5][1] = ∞ 

 
Reduce resultant matrix if required. 

 
 
 

 

 

 
 

 

Cost of node 10: 
 

C(10) = C(6) + Reduction cost + M6 [2][5] 
 

• 28+0+0=28 
 
State space tree 

 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

Add edge 5-3 (Path 1-4-2-5-3): 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



 

Cost of node 11: 
 

C(11) = C(10) + Reduction cost + M10 [5][3] 
 

=28+0+0=28 
 
 

 

 

State space tree: 
 

 

 

 
 

 

 
 
 

 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

So we can select any of the edge. Thus the final path includes the edges <3, 1>, <5, 3>, <1, 4>, <4, 2>, <2, 

5>, that forms the path 1 – 4 – 2 – 5 – 3 – 1. This path has cost of 28. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 



 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

UNIT 5 
 

Tractable and Intractable Problems 
 

Tractable problems refer to computational problems that can be solved efficiently using algorithms 

that can scale with the input size of the problem. In other words, the time required to solve a tractable 

problem increases at most polynomially with the input size. 

 

On the other hand, intractable problems are computational problems for which no known algorithm 

can solve them efficiently in the worst-case scenario. This means that the time required to solve an 

intractable problem grows exponentially or even faster with the input size. 

 

One example of a tractable problem is computing the sum of a list of n numbers. The time required to 

solve this problem scales linearly with the input size, as each number can be added to a running total 

in constant time. Another example is computing the shortest path between two nodes in a graph, 

which can be solved efficiently using algorithms like Dijkstra's algorithm or the A* algorithm. 

 

In contrast, some well-known intractable problems include the traveling salesman problem, the 

knapsack problem, and the Boolean satisfiability problem. These problems are NP-hard, meaning that 

any problem in NP (the set of problems that can be solved in polynomial time using a non-deterministic 

Turing machine) can be reduced to them in polynomial time. While it is possible to find approximate 

solutions to these problems, there is no known algorithm that can solve them exactly in polynomial 

time. 

 

In summary, tractable problems are those that can be solved efficiently with algorithms that scale well 

with the input size, while intractable problems are those that cannot be solved efficiently in the worst-

case scenario. 

 

Examples of Tractable problems 



 

• Sorting: Given a list of n items, the task is to sort them in ascending or descending order. 

Algorithms like QuickSort and MergeSort can solve this problem in O(n log n) time 

complexity. 

 
• Matrix multiplication: Given two matrices A and B, the task is to find their product C = AB. 

The best-known algorithm for matrix multiplication runs in O(n^2.37) time complexity, which 

is considered tractable for practical applications. 

 
• Shortest path in a graph: Given a graph G and two nodes s and t, the task is to find the shortest 

path between s and t. Algorithms like Dijkstra's algorithm and the A* algorithm can solve this 

problem in O(m + n log n) time complexity, where m is the number of edges and n is the 

number of nodes in the graph. 

 
• Linear programming: Given a system of linear constraints and a linear objective function, the 

task is to find the values of the variables that optimize the objective function subject to the 

constraints. Algorithms like the simplex method can solve this problem in polynomial time. 

 
• Graph coloring: Given an undirected graph G, the task is to assign a color to each node such that 

no two adjacent nodes have the same color, using as few colors as possible. The greedy 

algorithm can solve this problem in O(n^2) time complexity, where n is the number of nodes in 

the graph.  
 

 

 
 

These problems are considered tractable because algorithms exist that can solve them in polynomial 

time complexity, which means that the time required to solve them grows no faster than a polynomial 

function of the input size. 

 
 

Examples of intractable problems 
 

• Traveling salesman problem (TSP): Given a set of cities and the distances between them, the 

task is to find the shortest possible route that visits each city exactly once and returns to the 

starting city. The best-known algorithms for solving the TSP have an exponential worst-case 

time complexity, which makes it intractable for large instances of the problem. 

 
• Knapsack problem: Given a set of items with weights and values, and a knapsack that can 

carry a maximum weight, the task is to find the most valuable subset of items that can be 

carried by the knapsack. The knapsack problem is also NP-hard and is intractable for large 

instances of the problem. 

 
• Boolean satisfiability problem (SAT): Given a boolean formula in conjunctive normal form (CNF), 

the task is to determine if there exists an assignment of truth values to the variables that makes 



the formula true. The SAT problem is one of the most well-known NP-complete problems, which 

means that any NP problem can be reduced to SAT in polynomial time. 

 

• Subset sum problem: Given a set of integers and a target sum, the task is to find a subset of 

the integers that sums up to the target sum. Like the knapsack problem, the subset sum 

problem is also intractable for large instances of the problem. 

 
• Graph isomorphism problem: Given two graphs G1 and G2, the task is to determine if there 

 
 

 

 

• Linear search: Given a list of n items, the task is to find a specific item in the list. The time 

complexity of linear search is O(n), which is a polynomial function of the input size. 

 

• Bubble sort: Given a list of n items, the task is to sort them in ascending or descending order. 

The time complexity of bubble sort is O(n^2), which is also a polynomial function of the input 

size. 

 
• Shortest path in a graph: Given a graph G and two nodes s and t, the task is to find the shortest 

path between s and t. Algorithms like Dijkstra's algorithm and the A* algorithm can solve this 

problem in O(m + n log n) time complexity, which is a polynomial function of the input size. 

 
• Maximum flow in a network: Given a network with a source node and a sink node, and 

capacities on the edges, the task is to find the maximum flow from the source to the sink. The 

Ford-Fulkerson algorithm can solve this problem in O(mf), where m is the number of edges in 

the network and f is the maximum flow, which is also a polynomial function of the input size. 

 
• Linear programming: Given a system of linear constraints and a linear objective function, the 

task is to find the values of the variables that optimize the objective function subject to the 

constraints. Algorithms like the simplex method can solve this problem in polynomial time. 

 
 

P (Polynomial) problems 
 

P problems refer to problems where an algorithm would take a polynomial amount of time to 

solve, or where Big-O is a polynomial (i.e. O(1), O(n), O(n²), etc). These are problems that 

would be considered ‘easy’ to solve, and thus do not generally have immense run times. 

 
NP (Non-deterministic Polynomial) Problems 

 
NP problems were a little harder for me to understand, but I think this is what they are. In 

terms of solving a NP problem, the run-time would not be polynomial. It would be something 

like O(n!) or something much larger. 

 



NP-Hard Problems 
 

A problem is classified as NP-Hard when an algorithm for solving it can be translated to solve 

any NP problem. Then we can say, this problem is at least as hard as any NP problem, but it 

could be much harder or more complex. 

 
NP-Complete Problems 

 
NP-Complete problems are problems that live in both the NP and NP-Hard classes. This 

means that NP-Complete problems can be verified in polynomial time and that any NP 

problem can be reduced to this problem in polynomial time. 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

Bin Packing problem 
 

Bin Packing problem involves assigning n items of different weights and bins each of capacity c 

to a bin such that number of total used bins is minimized. It may be assumed that all items have 

weights smaller than bin capacity. 

 

The following 4 algorithms depend on the order of their inputs. They pack the item given 

first and then move on to the next input or next item 

 

1) Next Fit algorithm 
 

The simplest approximate approach to the bin packing problem is the Next-Fit (NF) 
 

algorithm which is explained later in this article. The first item is assigned to bin 1. Items 
 



2,... ,n are then considered by increasing indices : each item is assigned to the current bin, if 
 

it fits; otherwise, it is assigned to a new bin, which becomes the current one. 
 

Visual Representation 
 

Let us consider the same example as used above and bins of size 1 
 

 
 

 

 

 

Assuming the sizes of the items be {0.5, 0.7, 0.5, 0.2, 0.4, 0.2, 0.5, 0.1, 0.6}. 
 

The minimum number of bins required would be Ceil ((Total Weight) / (Bin Capacity))= 

Celi(3.7/1) = 4 bins. 

 

The Next fit solution (NF(I))for this instance I would be-

Considering 0.5 sized item first, we can place it in the first bin 

 
 

 
 

 

 
 

 

 

Moving on to the 0.7 sized item, we cannot place it in the first bin. Hence we place it in a 

new bin. 

 
 

 

 



 
 

 

 

 

Moving on to the 0.5 sized item, we cannot place it in the current bin. Hence we place it in a 

new bin. 

 
 

 

 
 

 

 

 
 

 

Moving on to the 0.2 sized item, we can place it in the current (third bin) 

 
 

 

 

 
 

 

 
 

 

Similarly, placing all the other items following the Next-Fit algorithm we get- 

 
 

 

 



 
 

 

 

 
 

Thus we need 6 bins as opposed to the 4 bins of the optimal solution. Thus we can see that 

this algorithm is not very efficient. 

 

Analyzing the approximation ratio of Next-Fit algorithm 
 

The time complexity of the algorithm is clearly O(n). It is easy to prove that, for any instance I of 

BPP,the solution value NF(I) provided by the algorithm satisfies the bound 

 

NF(I)<2z(I) 
 

where z(I) denotes the optimal solution value. Furthermore, there exist instances for which 

the ratio NF(I)/z(I) is arbitrarily close to 2, i.e. the worst-case approximation ratio of NF is r(NF) 

= 2. 

 

Psuedocode 
 

NEXT FIT (size[], n, c) 
 

size[] is the array containg the sizes of the items, n is  the number of items and c is the 
 

capacity of the bin 
 

{ 
 

Initialize result (Count of bins) and remaining capacity in current bin. 
 

res = 0 
 

bin_rem = c 
 

Place items one by one 
 

for (int i = 0; i < n; i++) { 
 

• If this item can't fit in current bin if 

(size[i] > bin_rem) { 

 

 
 

 

Use a new bin 
 



res++ 
 

bin_rem = c - size[i] 
 

} 
 

else 
 

bin_rem -= size[i]; 
 

} 
 

return res; 
 

} 
 

2) First Fit algorithm 
 

A better algorithm, First-Fit (FF), considers the items according to increasing 

indices and assigns each item to the lowest indexed initialized bin into which it 

fits; only when the current item cannot fit into any initialized bin, is a new bin 

introduced 

 

Visual Representation 
 

Let us consider the same example as used above and bins of size 1 

 
 

 
 

 

 

Assuming the sizes of the items be {0.5, 0.7, 0.5, 0.2, 0.4, 0.2, 0.5, 0.1, 0.6}. 
 

The minimum number of bins required would be Ceil ((Total Weight) / (Bin Capacity))= 

Celi(3.7/1) = 4 bins. 

 

The First fit solution (FF(I))for this instance I would be-

Considering 0.5 sized item first, we can place it in the first bin 

 



 
 

 

 

 
 

Moving on to the 0.7 sized item, we cannot place it in the first bin. Hence we place it in a 

new bin. 

 
 

 
 

 

 
 

 

Moving on to the 0.5 sized item, we can place it in the first bin. 

 
 

 
 

 

 
 

 

 

Moving on to the 0.2 sized item, we can place it in the first bin, we check with the second bin 

and we can place it there. 

 
 

 

 
 

 

 



 
 

Moving on to the 0.4 sized item, we cannot place it in any existing bin. Hence we place it in a 

new bin. 

 
 
 

 

 
 

 

 
 

 

 

Similarly, placing all the other items following the First-Fit algorithm we get- 

 
 

 
 

 

 

 
 

 

 

Thus we need 5 bins as opposed to the 4 bins of the optimal solution but is much more 

efficient than Next-Fit algorithm. 

 

Analyzing the approximation ratio of Next-Fit algorithm 
 

If FF(I) is the First-fit implementation for I instance and z(I) is the most optimal solution, then: 



 
 
 

 

 

 
 

 

 
 

 

 

It can be seen that the First Fit never uses more than 1.7 * z(I) bins. So First-Fit is better than 

Next Fit in terms of upper bound on number of bins. 

 

Psuedocode 
 

FIRSTFIT(size[], n, c) 
 

{ 
 

size[] is the array containg the sizes of the items, n is the number of items and c is the 

capacity of the bin 

 

/Initialize result (Count of bins) 
 
 

res = 0; 
 

Create an array to store remaining space in bins there can be at most n bins 

bin_rem[n]; 

 

Plae items one by one 
 

for (int i = 0; i < n; i++) { 
 

Find the first bin that can accommodate weight[i] 
 

int j; 
 

for (j = 0; j < res; j++) { 
 



if (bin_rem[j] >= size[i]) { 
 

bin_rem[j] = bin_rem[j] - size[i]; 
 

break; 
 

} 
 

} 
 

If no bin could accommodate size[i] 
 

if (j == res) { 
 

bin_rem[res] = c - size[i]; 
 

res++; 
 

} 
 

} 
 

return res; 
 

} 
 

 

3) Best Fit Algorithm 
 

The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current 

item to the feasible bin (if any) having the smallest residual capacity (breaking 

ties in favor of the lowest indexed bin). 

 

Simply put,the idea is to places the next item in the tightest spot. That is, put it in the bin so 

that the smallest empty space is left. 

 

Visual Representation 
 

Let us consider the same example as used above and bins of size 1 

 
 

 

 
 

 

Assuming the sizes of the items be {0.5, 0.7, 0.5, 0.2, 0.4, 0.2, 0.5, 0.1, 0.6}. 



 

The minimum number of bins required would be Ceil ((Total Weight) / (Bin Capacity))= 

Celi(3.7/1) = 4 bins. 

 

The First fit solution (FF(I))for this instance I would be-  
 
 

 

 

Considering 0.5 sized item first, we can place it in the first bin 

 
 
 

 

 
 

 

 
 

Moving on to the 0.7 sized item, we cannot place it in the first bin. Hence we place it in a 

new bin. 

 
 

 

 
 

 
 

 

 

 
 
Moving on to the 0.5 sized item, we can place it in the first bin tightly. 

 
 



 
 

 

 

 
 

 

Moving on to the 0.2 sized item, we cannot place it in the first bin but we can place it in 

second bin tightly. 

 
 

 

 

 
 

 

 
 

Moving on to the 0.4 sized item, we cannot place it in any existing bin. Hence we place it in a 

new bin. 

 
 

 
 

 

 
 

 

 

Similarly, placing all the other items following the First-Fit algorithm we get- 

 
 

 

 



 
 

 

 

 
 

Thus we need 5 bins as opposed to the 4 bins of the optimal solution but is much more 

efficient than Next-Fit algorithm. 

 

Analyzing the approximation ratio of Best-Fit algorithm  
 

 
 

 

It can be noted that Best-Fit (BF), is obtained from FF by assigning the current item to the 

feasible bin (if any) having the smallest residual capacity (breaking ties in favour of the 

lowest indexed bin). BF satisfies the same worst-case bounds as FF 

 
 

 

 

 

Analysis Of upper-bound of Best-Fit algorithm 
 

If z(I) is the optimal number of bins, then Best Fit never uses more than 2 * z(I)-2 bins. So 

Best Fit is same as Next Fit in terms of upper bound on number of bins. 

 

Psuedocode 
 

BESTFIT(size[],n, c) 
 

{ 
 

size[] is the array containg the sizes of the items, n is the number of items and c is the 

capacity of the bin 

 

Initialize result (Count of bins) 
 

res = 0; 
 

Create an array to store remaining space in bins there can be at most n bins 

bin_rem[n]; 

 

Place items one by one 
 

for (int i = 0; i < n; i++) { 
 

Find the best bin that can accommodate weight[i] 



 

int j; 
 

Initialize minimum space left and index of best bin 
 

int min = c + 1, bi = 0; 
 

for (j = 0; j < res; j++) { 
 

if (bin_rem[j] >= size[i] && bin_rem[j] - size[i] < min) { bi 

= j; 

 

min = bin_rem[j] - size[i]; 
 

} 
 

} 
 

If no bin could accommodate weight[i],create a new bin if 

(min == c + 1) { 

 

bin_rem[res] = c - size[i]; 
 

res++; 
 

} 
 

else 
 

Assign the item to best bin 
 

bin_rem[bi] -= size[i]; 
 

} 
 

 

return res; 
 

} 
 

 

in the offline version, we have all items at our disposal since the start of the execution. The 

natural solution is to sort the array from largest to smallest, and then apply the algorithms 

discussed henceforth. 

 

NOTE: In the online programs we have given the inputs upfront for simplicity but it can also 

work interactively 

 



Let us look at the various offline algorithms 
 

1) First Fit Decreasing 
 

We first sort the array of items in decreasing size by weight and apply first-fit algorithm as 

discussed above 

 

Algorithm 
 

Read the inputs of items 
 

Sort the array of items in decreasing order by their sizes 

Apply First-Fit algorithm 

 

Visual Representation 
 

Let us consider the same example as used above and bins of size 1 
 

 
 

 

 

Assuming the sizes of the items be {0.5, 0.7, 0.5, 0.2, 0.4, 0.2, 0.5, 0.1, 0.6}. 

Sorting them we get {0.7, 0.6, 0.5, 0.5, 0.5, 0.4, 0.2, 0.2, 0.1} 

The First fit Decreasing solution would be- 
 

We will start with 0.7 and place it in the first bin 

 
 

 
 

 

 
 

 

 

We then select 0.6 sized item. We cannot place it in bin 1. So, we place it in bin 2 



 
 

 

 

 
 

 

 

We then select 0.5 sized item. We cannot place it in any existing. So, we place it in bin 3 

 
 

 

 
 

 

 
 

 

 

We then select 0.5 sized item. We can place it in bin 3 

 
 

 
 

 

 
 

 

 

Doing the same for all items, we get. 



 
 
 

 

 
 

 

 

 
 

 

Thus only 4 bins are required which is the same as the optimal solution. 
 
 

 

2) Best Fit Decreasing 
 

We first sort the array of items in decreasing size by weight and apply Best-fit algorithm as 

discussed above 

 

Algorithm 
 

Read the inputs of items 
 

Sort the array of items in decreasing order by their sizes 

Apply Next-Fit algorithm 

 

Visual Representation 
 
Let us consider the same example as used above and bins of size 1 

 
 

 

 
 

Assuming the sizes of the items be {0.5, 0.7, 0.5, 0.2, 0.4, 0.2, 0.5, 0.1, 0.6}. 
 

Sorting them we get {0.7, 0.6, 0.5, 0.5, 0.5, 0.4, 0.2, 0.2, 0.1} 
 



The Best fit Decreasing solution would be- 
 

We will start with 0.7 and place it in the first bin 

 
 
 

 

 
 

 

 
 

We then select 0.6 sized item. We cannot place it in bin 1. So, we place it in bin 2 
 

 
 

 
 

 

 

 
 

We then select 0.5 sized item. We cannot place it in any existing. So, we place it in bin 3 

 
 
 

 

 
 

 

 

 

We then select 0.5 sized item. We can place it in bin 3 



 
 

 

 
 

 

 

 
 

 

Doing the same for all items, we get. 

 
 

 

 
 

 

 

 
 

 

 

Thus only 4 bins are required which is the same as the optimal solution. 
 

Approximation Algorithms for the Traveling Salesman Problem 
 

We solved the traveling salesman problem by exhaustive search in Section 3.4, mentioned its 

decision version as one of the most well-known NP-complete problems in Section 11.3, and 

saw how its instances can be solved by a branch-and-bound algorithm in Section 12.2. Here, 

we consider several approximation algorithms, a small sample of dozens of such algorithms 

suggested over the years for this famous problem. 

 
 

But first let us answer the question of whether we should hope to find a polynomial-time 

approximation algorithm with a finite performance ratio on all instances of the traveling 

salesman problem. As the following theorem [Sah76] shows, the answer turns out to be no, 

unless P = N P . 



 
 

THEOREM 1 If P != NP, there exists no c-approximation algorithm for the traveling salesman 

problem, i.e., there exists no polynomial-time approximation algorithm for this problem so that 

for all instances 

 
 
 

 

 

 
 

 

 
 

Nearest-neighbour algorithm 
 

The following well-known greedy algorithm is based on the nearest-neighbor heuristic: 
 

always go next to the nearest unvisited city. 
 

Step 1 Choose an arbitrary city as the start. 
 

Step 2 Repeat the following operation until all the cities have been visited: go to the 

unvisited city nearest the one visited last (ties can be broken arbitrarily). 

 

Step 3 Return to the starting city. 
 

EXAMPLE 1 For the instance represented by the graph in Figure 12.10, with a as the starting 

vertex, the nearest-neighbor algorithm yields the tour (Hamiltonian circuit) sa: a − b − c − d − 

a of length 10. 

 
 
 

 

 

 
 



 
 

The optimal∗ solution, as can be easily checked by exhaustive search, is the 
tour s : a − b − d − c − a of length 8. Thus, the accuracy ratio of this approximation is 

 

Unfortunately, except for its simplicity, not many good things can be said about the nearest-

neighbor algorithm. In particular, nothing can be said in general about the accuracy of solutions 

obtained by this algorithm because it can force us to traverse a very long edge on the last leg of 

the tour. Indeed, if we change the weight of edge (a, d) from 6 to an arbitrary large number w 

≥ 6 in Example 1, the algorithm will still yield the tour a − b − c − d − a of length 4 + w, and 

the optimal solution will still be a − b − d − c − a of length 8. Hence, 

 
 

 
 

 

 
 

which can be made as large as we wish by choosing an appropriately large value of w. 
 

Hence, RA = ∞ for this algorithm (as it should be according to Theorem 1). 
 
 

 

Twice-around-the-tree algorithm 
 

Step 1 Construct a minimum spanning tree of the graph corresponding to a given instance of 

the traveling salesman problem. 

 

Step 2 Starting at an arbitrary vertex, perform a walk around the minimum spanning tree 

recording all the vertices passed by. (This can be done by a DFS traversal.) 

 

Step 3 Scan the vertex list obtained in Step 2 and eliminate from it all repeated occurrences of 

the same vertex except the starting one at the end of the list. (This step is equivalent to making 

shortcuts in the walk.) The vertices remaining on the list will form a Hamiltonian circuit, which 

is the output of the algorithm. 

 
EXAMPLE 2 Let us apply this algorithm to the graph in Figure 12.11a. The minimum spanning 

tree of this graph is made up of edges (a, b), (b, c), (b, d), and (d, e) . A twice- 



 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

around-the-tree walk that starts and ends at a is 
 

a, b, c, b, d, e, d, b, a. 
 

Eliminating the second b (a shortcut from c to d), the second d, and the third b (a shortcut 

from e to a) yields the Hamiltonian circuit 

 

a, b, c, d, e, a 
 

of length 39. 
 

The tour obtained in Example 2 is not optimal. Although that instance is small enough to find an optimal 
solution by either exhaustive search or branch-and-bound, we refrained from doing so to reiterate a general 

point. As a rule, we do not know what the length of an ∗ optimal tour actually is, and therefore we cannot 
compute the accuracy ratio f (sa)/f (s ). For the twice-around-the-tree algorithm, we can at least estimate it 
above, provided the graph is Euclidean. 

 



 
 

Fermat's Little Theorem: 
 

If n is a prime number, then for every a, 1 < a < n-1, 

an-1 ≡ 1 (mod n) 

 
OR 

 

an-1 % n = 1 

 

Example: Since 5 is prime, 24 ≡ 1 (mod 5) [or 24%5 = 1], 

34 ≡ 1 (mod 5) and 44 ≡ 1 (mod 5) 

 

Since 7 is prime, 26 ≡ 1 (mod 7), 

 

36 ≡ 1 (mod 7), 46 ≡ 1 (mod 7) 

 

56 ≡ 1 (mod 7) and 66 ≡ 1 (mod 7) 

 

Algorithm 
 

• Repeat following k times: 
 

• Pick a randomly in the range [2, n - 2] 
 

• If gcd(a, n) ≠ 1, then return false 
 

• If an-1 &nequiv; 1 (mod n), then return false 

 
• Return true [probably prime]. 

 

Unlike merge sort, we don’t need to merge the two sorted arrays. Thus Quicksort requires 

lesser auxiliary space than Merge Sort, which is why it is often preferred to Merge Sort. Using a 

randomly generated pivot we can further improve the time complexity of QuickSort. 

 

Algorithm for random pivoting 
 

partition(arr[], lo, hi) 
 

 

pivot = arr[hi] 
 

i = lo // place for swapping 
 

https://en.wikipedia.org/wiki/Fermat's_little_theorem
https://www.geeksforgeeks.org/merge-sort/


for j := lo to hi – 1 do 
 

if arr[j] <= pivot then 
 

swap arr[i] with arr[j] 
 

i = i + 1 
 

swap arr[i] with arr[hi] 
 

return i 
 

partition_r(arr[], lo, hi) 
 

r = Random Number from lo to hi 
 

Swap arr[r] and arr[hi] 
 

return partition(arr, lo, hi) 
 

quicksort(arr[], lo, hi) 
 

if lo < hi 
 

• = partition_r(arr, lo, hi) 

quicksort(arr, lo , p-1) 

quicksort(arr, p+1, hi) 

 

 

Finding kth smallest element 
 

Problem Description: Given an array A[] of n elements and a positive integer K, find the Kth 

smallest element in the array. It is given that all array elements are distinct. 

 

For Example : 
 

Input : A[] = {10, 3, 6, 9, 2, 4, 15, 23}, K = 4 
 

Output: 6 
 

Input : A[] = {5, -8, 10, 37, 101, 2, 9}, K = 6 
 

Output: 37 
 

Quick-Select : Approach similar to quick sort 
 

This approach is similar to the quick sort algorithm where we use the partition on the input 

array recursively. But unlike quicksort, which processes both sides of the array recursively, this 



algorithm works on only one side of the partition. We recur for either the left or right side 

according to the position of pivot. 

 

Solution Steps 
 

• Partition the array A[left .. right] into two subarrays A[left .. pos] and A[pos + 1 .. right] such 

that each element of A[left .. pos] is less than each element of A[pos + 1 .. right]. 

 
• Computes the number of elements in the subarray A[left .. pos] i.e. count = pos - left + 1 

 
• if (count == K), then A[pos] is the Kth smallest element. 

 
• Otherwise determines in which of the two subarrays A[left .. pos-1] and A[pos + 1 .. right] 

the Kth smallest element lies. 

 

If (count > K) then the desired element lies on the left side of the partition 

 

If (count < K), then the desired element lies on the right side of the partition. Since we 

already know i values that are smaller than the kth smallest element of A[left .. right], the 

desired element is the (K - count)th smallest element of A[pos + 1 .. right]. 

 

Base case is the scenario of single element array i.e left ==right. return A[left] or A[right]. 
 

Pseudo-Code 
 

• Original value for left = 0 and right = n-1 int 

kthSmallest(int A[], int left, int right, int K) 

 
{ 

 
if (left == right) 

return A[left] 

 
int pos = partition(A, left, right) 

count = pos - left + 1 

 
if ( count == K ) 

return A[pos] 

else if ( count > K ) 
 

return kthSmallest(A, left, pos-1, K) 

else 

 
return kthSmallest(A, pos+1, right, K-i) 

 
} 



 

int partition(int A[], int l, int r) 
 

{ 
 

int x = A[r] 
 

int i = l-1 
 

for ( j = l to r-1 ) 
 

{ 
 

if (A[j] <= x) 
 

{ 
 

i = i + 1 
 

swap(A[i], A[j]) 
 

} 
 

} 
 

swap(A[i+1], A[r]) 
 

return i+1 
 

} 
 

Complexity Analysis 
 

Time Complexity: The worst-case time complexity for this algorithm is O(n²), but it can be 

improved if we choose the pivot element randomly. If we randomly select the pivot, the 

expected time complexity would be linear, O(n). 

 
 

 

 

 
 

 

 
 

 

 

 
 



 

  


