CS3551

DISTRIBUTED COMPUTING

COURSE OBJECTIVES:

- To introduce the computation and communication models of distributed systems
- To illustrate the issues of synchronization and collection of information in distributed systems
- To describe distributed mutual exclusion and distributed deadlock detection techniques
- To elucidate agreement protocols and fault tolerance mechanisms in distributed systems
- To explain the cloud computing models and the underlying concepts

UNIT I INTRODUCTION

Introduction: Definition-Relation to Computer System Components – Motivation – Message -Passing Systems versus Shared Memory Systems – Primitives for Distributed Communication – Synchronous versus Asynchronous Executions – Design Issues and Challenges; A Model of Distributed Computations: A Distributed Program – A Model of Distributed Executions – Models of Communication Networks – Global State of a Distributed System.

UNIT II LOGICAL TIME AND GLOBAL STATE

Logical Time: Physical Clock Synchronization: NTP – A Framework for a System of Logical Clocks – Scalar Time – Vector Time; Message Ordering and Group Communication: Message Ordering Paradigms – Asynchronous Execution with Synchronous Communication – Synchronous Program Order on Asynchronous System – Group Communication – Causal Order – Total Order; Global State and Snapshot Recording Algorithms: Introduction – System Model and Definitions – Snapshot Algorithms for FIFO Channels.

UNIT III DISTRIBUTED MUTEX AND DEADLOCK

Distributed Mutual exclusion Algorithms: Introduction – Preliminaries – Lamport's algorithm – Ricart-Agrawala's Algorithm — Token-Based Algorithms – Suzuki-Kasami's Broadcast Algorithm; Deadlock Detection in Distributed Systems: Introduction – System Model – Preliminaries – Models of Deadlocks – Chandy-Misra-Haas Algorithm for the AND model and OR Model.

UNIT IV CONSENSUS AND RECOVERY

Consensus and Agreement Algorithms: Problem Definition – Overview of Results – Agreement in a Failure-Free System(Synchronous and Asynchronous) – Agreement in Synchronous Systems with Failures; Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues in Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm - Algorithm for Asynchronous Checkpointing and Recovery

10

10

8

10

UNIT V CLOUD COMPUTING

Definition of Cloud Computing – Characteristics of Cloud – Cloud Deployment Models – Cloud Service Models – Driving Factors and Challenges of Cloud – Virtualization – Load Balancing – Scalability and Elasticity – Replication – Monitoring – Cloud Services and Platforms: Compute Services – Storage Services – Application Services

COURSE OUTCOMES:

Upon the completion of this course, the student will be able to

CO1: Explain the foundations of distributed systems (K2)

CO2: Solve synchronization and state consistency problems (K3)

CO3 Use resource sharing techniques in distributed systems (K3)

CO4: Apply working model of consensus and reliability of distributed systems (K3)

CO5: Explain the fundamentals of cloud computing (K2)

TOTAL:45 PERIODS

TEXT BOOKS

- 1. Kshemkalyani Ajay D, Mukesh Singhal, "Distributed Computing: Principles, Algorithms and Systems", Cambridge Press, 2011.
- 2. Mukesh Singhal, Niranjan G Shivaratri, "Advanced Concepts in Operating systems", Mc-Graw Hill Publishers, 1994.

REFERENCES

- 1. George Coulouris, Jean Dollimore, Time Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012.
- 2. Pradeep L Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 3. Tanenbaum A S, Van Steen M, "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 4. Liu M L, "Distributed Computing: Principles and Applications", Pearson Education, 2004.
- 5. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, 2003.
- 6. Arshdeep Bagga, Vijay Madisetti, "Cloud Computing: A Hands-On Approach", UniversitiesPress, 2014.

CO's-PO's & PSO's MAPPING

CO's	's PO's												PSO's		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	3	3	1	-	-	-	2	1	3	3	2	1	1
2	1	3	2	1	2	-	-	-	2	2	2	2	1	3	2
3	2	2	1	3	3	-	-	-	3	2	1	1	1	2	1
4	1	2	2	3	1	-	-	-	3	3	2	1	3	1	1
5	3	3	1	2	3	-	-	-	3	3	3	1	3	2	3
AVg.	1.8	2.4	1.8	2.4	2	-	-	-	2.6	2.2	2.2	1.6	2	1.8	1.6

1 - low, 2 - medium, 3 - high, '-"- no correlation