
UNIT I -  INTRODUCTION 

Introduction: Definition-Relation to Computer System Components – Motivation – Message -Passing 

Systems versus Shared Memory Systems – Primitives for Distributed Communication – 

Synchronous versus Asynchronous Executions – Design Issues and Challenges; A Model of 

Distributed Computations: A Distributed Program – A Model of Distributed Executions – Models of 

Communication Networks – Global State of a Distributed System. 

 

Introduction: 

 

1.1 Definition 

 

A distributed system is a collection of independent entities that cooperate to solve a 

problem that cannot be individually solved. 

A distributed system can be characterized as a collection of mostly autonomous processors 

communicating over a communication network and having the following features: 

• No common physical clock - This is an important assumption because it introduces 

the element of “distribution” in the system and gives rise to the inherent asynchrony 

amongst the processors. 

• No shared memory - This is a key feature that requires message-passing for 

communication. This feature implies the absence of the common physical clock 

• Geographical separation - The geographically wider apart that the processors are, 

the more representative is the system of a distributed system. 

• Autonomy and heterogeneity- The processors are “loosely coupled” in that they 

have different speeds and each can be running a different operating system. They 

are usually not part of a dedicated system, but cooperate with one another by 

offering services or solving a problem jointly. 

 

1.2 Relation to Computer System Components 

 

A typical distributed system is shown in Figure 1.1. Each computer has a memory- 

processing unit and the computers are connected by a communication network. 

 

 



Figure 1.2 shows the relationships of the software components that run on each of the 

computers and use the local operating system and network protocol stack for functioning. The 

distributed software is also termed as middleware. 

A distributed execution is the execution of processes across the distributed system to 

collaboratively achieve a common goal. An execution is also sometimes termed a computation or 

a run. 

 

 

 

 

 

The distributed system uses a layered architecture to break down the complexity of system 

design. The middleware is the distributed software that drives the distributed system, while 

providing transparency of heterogeneity at the platform level. 

Figure 1.2 schematically shows the interaction of this software with these system 

components at each processor. 

Assume that the middleware layer does not contain the traditional application layer 

functions of the network protocol stack, such as http, mail, ftp, and telnet. Various primitive and 



calls to functions defined in various libraries of the middleware layer are embedded in the user 

program code. 

There exist several libraries to choose from to invoke primitives for the more common 

functions such as reliable and ordered multicasting of the middleware layer. 

There are several standards such as Object Management Group’s (OMG) common object 

request broker architecture (CORBA), and the remote procedure call (RPC) mechanism. 

The RPC mechanism conceptually works like a local procedure call, with the difference 

that the procedure code may reside on a remote machine, and the RPC software sends a message 

across the network to invoke the remote procedure. It then awaits a reply, after which the procedure 

call completes from the perspective of the program that invoked it. 

Currently deployed commercial versions of middleware often use CORBA, DCOM 

(distributed component object model), Java, and RMI (remote method invocation) technologies. 

The message-passing interface (MPI) developed in the research community is an example of an 

interface for various communication functions. 

 

1.3 Motivation 

 

The motivation for using a distributed system is some or all of the following requirements. 

1. Inherently distributed computations: In many applications such as money 

transfer in banking, or reaching consensus among parties that are geographically 

distant, the computation is inherently distributed. 

2. Resource sharing: Resources such as peripherals, complete data sets in databases, 

special libraries, as well as data (variable/files) cannot be fully replicated at all the 

sites because it is often neither practical nor cost-effective. Further, they cannot be 

placed at a single site because access to that site might prove to be a bottleneck. 

Therefore, such resources are typically distributed across the system. For example, 

distributed databases such as DB2 partition the data sets across several servers, in 

addition to replicating them at a few sites for rapid access as well as reliability 

3. Access to geographically remote data and resources: In many scenarios, the data 

cannot be replicated at every site participating in the distributed execution because 

it may be too large or too sensitive to be replicated. For example, payroll data within 

a multinational corporation is both too large and too sensitive to be replicated at 

every branch office/site. 



4. Enhanced reliability: A distributed system has the inherent potential to provide 

increased reliability because of the possibility of replicating resources and 

executions, as well as the reality that geographically distributed resources are not 

likely to crash/malfunction at the same time under normal circumstances. 

Reliability entails several aspects: 

• availability, i.e., the resource should be accessible at all times; 

• integrity, i.e., the value/state of the resource should be correct, in the face 

of concurrent access from multiple processors, as per the semantics 

expected by the application; 

• fault-tolerance, i.e., the ability to recover from system failures 

5. Increased performance/cost ratio: By resource sharing and accessing 

geographically remote data and resources, the performance/cost ratio is increased. 

Although higher throughput has not necessarily been the main objective behind 

using a distributed system, nevertheless, any task can be partitioned across the 

various computers in the distributed system. 

6. Scalability: As the processors are usually connected by a wide-area network, 

adding more processors does not pose a direct bottleneck for the communication 

network. 

7. Modularity and incremental expandability: Heterogeneous processors may be 

easily added into the system without affecting the performance, as long as those 

processors are running the same middleware algorithms. Similarly, existing 

processors may be easily replaced by other processors. 

 

1.4 Message Passing Systems versus Shared Memory Systems 

 

Shared memory systems are those in which there is a (common) shared address space 

throughout the system. Communication among processors takes place via shared data variables, 

and control variables for synchronization among the processors. Semaphores and monitors that 

were originally designed for shared memory uniprocessors and multiprocessors are examples of 

how synchronization can be achieved in shared memory systems. 

 

 

 



All multicomputer (NUMA as well as message-passing) systems that do not have a shared 

address space provided by the underlying architecture and hardware necessarily communicate by 

message passing. Conceptually, programmers find it easier to program using shared memory than 

by message passing. 

 

For this and several other reasons that we examine later, the abstraction called shared 

memory is sometimes provided to simulate a shared address space. For a distributed system, this 

abstraction is called distributed shared memory. Implementing this abstraction has a certain cost 

but it simplifies the task of the application programmer. There also exists a well-known folklore 

result that communication via message-passing can be simulated by communication via shared 

memory and vice-versa. Therefore, the two paradigms are equivalent. 

 

Emulating message-passing on a shared memory system (MP →SM) 

 

The shared address space can be partitioned into disjoint parts, one part being assigned to 

each processor. “Send” and “receive” operations can be implemented by writing to and reading 

from the destination/sender processor’s address space, respectively. 

 

Specifically, a separate location can be reserved as the mailbox for each ordered pair of 

processes. A Pi–Pj message-passing can be emulated by a write by Pi to the mailbox and then a 

read by Pj from the mailbox. In the simplest case, these mailboxes can be assumed to have 

unbounded size. The write and read operations need to be controlled using synchronization 

primitives to inform the receiver/sender after the data has been sent/received. 

 

Emulating shared memory on a message-passing system (SM →MP) 

 

This involves the use of “send” and “receive” operations for “write” and “read” operations. 

Each shared location can be modeled as a separate process; “write” to a shared location is emulated 

by sending an update message to the corresponding owner process; a “read” to a shared location 

is emulated by sending a query message to the owner process. As accessing another processor’s 

memory requires send and receive operations, this emulation is expensive. 

Thus, the latencies involved in read and write operations may be high even when using 

shared memory emulation because the read and write operations are implemented by using 

network-wide communication under the covers. 



 

In a MIMD message-passing multicomputer system, each “processor” may be a tightly 

coupled multiprocessor system with shared memory. Within the multiprocessor system, the 

processors communicate via shared memory. Between two computers, the communication is by 

message passing. As message-passing systems are more common and more suited for wide-area 

distributed systems, we will consider message-passing systems more extensively than we consider 

shared memory systems. 

1.5 Primitives for distributed communication 

 

Blocking/non-blocking, synchronous/asynchronous primitives 

Message send and message receive communication primitives are denoted Send() and 

Receive(), respectively. 

A Send primitive has at least two parameters – the destination, and the buffer in the user 

space, containing the data to be sent. Similarly, a Receive primitive has at least two parameters – 

the source from which the data is to be received (this could be a wildcard), and the user buffer into 

which the data is to be received. 

There are two ways of sending data when the Send primitive is invoked – the buffered 

option and the unbuffered option. 

The buffered option which is the standard option copies the data from the user buffer to the 

kernel buffer. The data later gets copied from the kernel buffer onto the network. In the unbuffered 

option, the data gets copied directly from the user buffer onto the network. 

For the Receive primitive, the buffered option is usually required because the data may 

already have arrived when the primitive is invoked, and needs a storage place in the kernel. 

The following are some definitions of blocking/non-blocking and synchronous/ 

asynchronous primitives. 

• Synchronous primitives: A Send or a Receive primitive is synchronous if both the Send() 

and Receive() handshake with each other. The processing for the Send primitive completes 

only after the invoking processor learns that the other corresponding Receive primitive has 

also been invoked and that the receive operation has been completed. The processing for 

the Receive primitive completes when the data to be received is copied into the receiver’s 



user buffer. 

• Asynchronous primitives: A Send primitive is said to be asynchronous if control returns 

back to the invoking process after the data item to be sent has been copied out of the user- 

specified buffer. It does not make sense to define asynchronous Receive primitives. 

• Blocking primitives: A primitive is blocking if control returns to the invoking process 

after the processing for the primitive (whether in synchronous or asynchronous mode) 

completes. 

• Non-blocking primitives: A primitive is non-blocking if control returns back to the 

invoking process immediately after invocation, even though the operation has not 

completed. For a non-blocking Send, control returns to the process even before the data is 

copied out of the user buffer. For a non-blocking Receive, control returns to the process 

even before the data may have arrived from the sender. 

 

 

Fig. A non-blocking send primitive. 

 

The code for a non-blocking Send would look as shown in Figure. First, it can keep 

checking (in a loop or periodically) if the handle has been flagged or posted. Second, it can issue 

a Wait with a list of handles as parameters. The Wait call usually blocks until one of the parameter 

handles is posted. 

 

If at the time that Wait() is issued, the processing for the primitive (whether synchronous 

or asynchronous) has completed, the Wait returns immediately. The completion of the processing 

of the primitive is detectable by checking the value of handlek. If the processing of the primitive 

has not completed, the Wait blocks and waits for a signal to wake it up. When the processing for 

the primitive completes, the communication subsystem software sets the value of handlek and 

wakes up (signals) any process with a Wait call blocked on this handlek This is called posting the 

completion of the operation. 

 



There are therefore four versions of the Send primitive – synchronous blocking, synchronous non-

blocking, asynchronous blocking, and asynchronous non-blocking. For the Receive primitive, 

there are the blocking synchronous and non-blocking synchronous versions. These versions of the 

primitives are illustrated in Figure using a timing diagram. Here the timelines are shown for each 

process: (1) for the process execution, (2) for the user buffer from/to which data is sent/received, 

and (3) for the kernel/communication subsystem. 

 

 

 

Figure: Blocking/ non-blocking and synchronous/asynchronous primitives. 

Process Pi is sending and process Pj is receiving. 

(a) Blocking synchronous Send and blockin (synchronous) Receive. 

(b) Non-blocking synchronous Send and nonblocking (synchronous) Receive. 

(c) Blocking asynchronous Send. 

(d) Non-blocking asynchronous Send. 

 

 

 



 

Processor synchrony 

 

Processor synchrony indicates that all the processors execute in lock-step with their clocks 

synchronized. As this synchrony is not attainable in a distributed system, what is more generally 

indicated is that for a large granularity of code, usually termed as a step, the processors are 

synchronized. This abstraction is implemented using some form of barrier synchronization to 

ensure that no processor begins executing the next step of code until all the processors have 

completed executing the previous steps of code assigned to each of the processors. 

Libraries and standards 

 

There exists a wide range of primitives for message-passing. Many commercial software 

products (banking, payroll, etc., applications) use proprietary primitive libraries supplied with the 

software marketed by the vendors (e.g., the IBM CICS software which has a very widely installed 

customer base worldwide uses its own primitives). 

 

The message-passing interface (MPI) library and the PVM (parallel virtual machine) 

library are used largely by the scientific community, but other alternative libraries exist. 

 

Commercial software is often written using the remote procedure calls (RPC) mechanism 

in which procedures that potentially reside across the network are invoked transparently to the 

user, in the same manner that a local procedure is invoked. 

 

1.6 Synchronous versus Asynchronous Executions 

 

An asynchronous execution is an execution in which, 

(i) there is no processor synchrony and there is no bound on the drift rate of processor 

clocks, 

(ii) message delays (transmission + propagation times) are finite but unbounded, 

(iii) there is no upper bound on the time taken by a process to execute a step. 

 

An example asynchronous execution with four processes P0 to P3 is shown in Figure. The 

arrows denote the messages; the tail and head of an arrow mark the send and receive event for that 

message, denoted by a circle and vertical line, respectively. Non-communication events, also 

termed as internal events, are shown by shaded circles. 



 

 

 

Figure: An example of an asynchronous execution in a message-passing system 

A synchronous execution is an execution in which 

(i) processors are synchronized and the clock drift rate between any two processors 

is bounded, 

(ii) message delivery (transmission + delivery) times are such that they occur in 

one logical step or round, 

(iii) there is a known upper bound on the time taken by a process to execute a step. 

 
An example of a synchronous execution with four processes P0 to P3 is shown in Figure. 

The arrows denote the messages. 
 

 

 

Figure: An example of a synchronous execution in a message-passing system 

 
The synchronous execution is an abstraction that needs to be provided to the programs. 

When implementing this abstraction, observe that the fewer the steps or “synchronizations” of the 

processors, the lower the delays and costs. If processors are allowed to have an asynchronous 

execution for a period of time and then they synchronize, then the granularity of the synchrony is 



coarse. This is really a virtually synchronous execution, and the abstraction is sometimes termed 

as virtual synchrony. 

Ideally, many programs want the processes to execute a series of instructions in rounds (also 

termed as steps or phases) asynchronously, with the requirement that after each round/step/phase, 

all the processes should be synchronized and all messages sent should be delivered. This is the 

commonly understood notion of a synchronous execution. Within each round/phase/step, there 

may be a finite and bounded number of sequential sub-rounds (or subphases or sub-steps) that 

processes execute. Each sub-round is assumed to send at most one message per process; hence 

the message(s) sent will reach in a single message hop. 

Emulating an asynchronous system by a synchronous system (A→S) 

 

An asynchronous program (written for an asynchronous system) can be emulated on a 

synchronous system fairly trivially as the synchronous system is a special case of an asynchronous 

system – all communication finishes within the same round in which it is initiated. 

 

Emulating a synchronous system by an asynchronous system (S →A) 

 

A synchronous program (written for a synchronous system) can be emulated on an 

asynchronous system using a tool called synchronizer. 

 

Emulations 

 

 

 

 

 

Figure: Emulations among the principal system classes in a failure free system. 

 

There are four broad classes of programs, as shown in Figure. Using the emulations shown, 

any class can be emulated by any other. If system A can be emulated by system B denoted A/B, 

and if a problem is not solvable in B, then it is also not solvable in A. Likewise, if a problem is 



solvable in A, it is also solvable in B. Hence, in a sense, all four classes are equivalent in terms of 

“computability” – what can and cannot be computed – in failure-free systems. 

1.7 Design issues and challenges 

 

Distributed systems challenges from a system perspective 

a. Communication: This task involves designing appropriate mechanisms for 

communication among the processes in the network. Some example mechanisms are: 

remote procedure call (RPC), remote object invocation cation (ROI), message-oriented 

communication versus stream-oriented communication. 

b. Processes: Some of the issues involved are: management of processes and threads at 

clients/servers; code migration; and the design of software and mobile agents. 

c. Naming: Devising easy to use and robust schemes for names, identifiers, and addresses is 

essential for locating resources and processes in a transparent and scalable manner. Naming 

in mobile systems provides additional challenges because naming cannot easily be tied to 

any static geographical topology. 

d. Synchronization: Mechanisms for synchronization or coordination among the processes 

are essential. Mutual exclusion is the classical example of synchronization, but many other 

forms of synchronization, such as leader election are also needed. 

e. Data storage and access: Schemes for data storage, and implicitly for accessing the data 

in a fast and scalable manner across the network are important for efficiency. 

f. Consistency and replication: To avoid bottlenecks, to provide fast access to data, and to 

provide scalability, replication of data objects is highly desirable. 

g. Fault tolerance: Fault tolerance requires maintaining correct and efficient operation in 

spite of any failures of links, nodes, and processes. 

h. Security: Distributed systems security involves various aspects of cryptography, secure 

channels, access control, key management – generation and distribution, authorization, and 

secure group management. 

i. Applications Programming Interface (API) and transparency: The API for 

communication and other specialized services is important for the ease of use and wider 

adoption of the distributed systems services by non-technical users. 

Transparency deals with hiding the implementation policies from the user, and 

can be classified as follows. 



 

 

a. Access Transparency hides differences in data representation on different systems 

and provides uniform operations to access system resources. 

b. Location transparency makes the locations of resources transparent to the users. 

c. Migration transparency allows relocating resources without changing names. 

d. The ability to relocate the resources as they are being accessed is relocation 

transparency. 

e. Replication transparency does not let the user become aware of any replication. 

f. Concurrency transparency deals with masking the concurrent use of shared 

resources for the user. 

g. Failure transparency refers to the system being reliable and fault-tolerant. 

j. Scalability and modularity: The algorithms, data (objects), and services must be as 

distributed as possible. Various techniques such as replication, caching and cache 

management, and asynchronous processing help to achieve scalability. 

Algorithmic challenges in distributed computing 

 

a. Designing useful execution models and frameworks 

The interleaving model and partial order model are two widely adopted models of 

distributed system executions. They have proved to be particularly useful for operational 

reasoning and the design of distributed algorithms. 

b. Dynamic distributed graph algorithms and distributed routing algorithms 

The distributed system is modeled as a distributed graph, and the graph algorithms form 

the building blocks for a large number of higher level communication, data dissemination, 

object location, and object search functions. 

c. Time and global state in a distributed system 

The processes in the system are spread across three-dimensional physical space. Another 

dimension, time, has to be superimposed uniformly across space. The challenges pertain to 

providing accurate physical time, and to providing a variant of time, called logical time. 

d. Synchronization/coordination mechanisms 

The processes must be allowed to execute concurrently, except when they need to 

synchronize to exchange information, i.e., communicate about shared data. 

Synchronization is essential for the distributed processes to overcome the limited 



observation of the system state from the viewpoint of any one process. Here are some 

examples of problems requiring synchronization. They are Physical clock synchronization, 

Leader election, Mutual exclusion, Deadlock detection and resolution, Termination 

detection and Garbage collection. 

e. Group communication, multicast, and ordered message delivery 

A group is a collection of processes that share a common context and collaborate on a 

common task within an application domain. Specific algorithms need to be designed to 

enable efficient group communication and group management wherein processes can join 

and leave groups dynamically, or even fail. 

f. Monitoring distributed events and predicates 

Predicates defined on program variables that are local to different processes are used for 

specifying conditions on the global system state, and are useful for applications such as 

debugging, sensing the environment, and in industrial process control. 

g. Distributed program design and verification tools 

Methodically designed and verifiably correct programs can greatly reduce the overhead of 

software design, debugging, and engineering. Designing mechanisms to achieve these 

design and verification goals is a challenge 

h. Debugging distributed programs 

Debugging sequential programs is hard; debugging distributed programs is that much harder 

because of the concurrency in actions and the ensuing uncertainty due to the large number 

of possible executions defined by the interleaved concurrent actions. 

i. Data replication, consistency models, and caching 

Fast access to data and other resources requires them to be replicated in the distributed 

system. Managing such replicas in the face of updates introduces the problems of ensuring 

consistency among the replicas and cached copies. 

j. World Wide Web design – caching, searching, scheduling 

The Web is an example of a widespread distributed system with a direct interface to the end 

user, wherein the operations are predominantly read-intensive on most objects. 

k. Distributed shared memory abstraction 

A shared memory abstraction simplifies the task of the programmer because he or she has 

to deal only with read and write operations, and no message communication primitives. 

However, under the covers in the middleware layer, the abstraction of a shared address 



space has to be implemented by using message-passing. Hence, in terms of overheads, the 

shared memory abstraction is not less expensive. 

l. Reliable and fault-tolerant distributed systems 

A reliable and fault-tolerant environment has multiple requirements and aspects, and these 

can be addressed using various strategies. They are Consensus algorithms, Replication and 

replica management, Voting and quorum systems, Distributed databases and distributed 

commit, Self-stabilizing systems, Checkpointing and recovery algorithms, Failure 

detectors. 

m. Load balancing 

The goal of load balancing is to gain higher throughput, and reduce the userperceived 

latency. The following are some forms of load balancing: Data migration, Computation 

migration and Distributed scheduling. 

n. Real-time scheduling 

Real-time scheduling is important for mission-critical applications, to accomplish the task 

execution on schedule. The problem becomes more challenging in a distributed system 

where a global view of the system state is absent. On-line or dynamic changes to the 

schedule are also harder to make without a global view of the state. 

o. Performance 

Although high throughput is not the primary goal of using a distributed system, achieving 

good performance is important. The following are some example issues arise in determining 

the performance: Metrics and Measurement methods/tools 

Applications of distributed computing and newer challenges 

 

• Mobile systems 

Mobile systems typically use wireless communication which is based on 

electromagnetic waves and utilizes a shared broadcast medium. Hence, the characteristics of 

communication are different; many issues such as range of transmission and power of 

transmission come into play, besides various engineering issues such as battery power 

conservation, interfacing with the wired Internet, signal processing and interference 

• Sensor networks 

A sensor is a processor with an electro-mechanical interface that is capable of 

sensing physical parameters, such as temperature, velocity, pressure, humidity, and 



chemicals. Recent developments in cost-effective hardware technology have made it 

possible to deploy very large (of the order of 106 or higher) low-cost sensors. 

• Ubiquitous or pervasive computing 

Ubiquitous systems represent a class of computing where the processors embedded 

in and seamlessly pervading through the environment perform application functions in the 

background, much like in sci-fi movies. The intelligent home, and the smart workplace are 

some example of ubiquitous environments currently under intense research and 

development. 

• Peer-to-peer computing 

Peer-to-peer (P2P) computing represents computing over an application layer 

network wherein all interactions among the processors are at a “peer” level, without any 

hierarchy among the processors. Thus, all processors are equal and play a symmetric role in 

the computation. 

• Publish-subscribe, content distribution, and multimedia 

In a dynamic environment where the information constantly fluctuates (varying 

stock prices is a typical example), there needs to be: 

(i) an efficient mechanism for distributing this information (publish), 

(ii) an efficient mechanism to allow end users to indicate interest in receiving 

specific kinds of information (subscribe) 

(iii) an efficient mechanism for aggregating large volumes of published 

information and filtering it as per the user’s subscription filter 

• Distributed agents 

Agents are software processes or robots that can move around the system to do 

specific tasks for which they are specially programmed. The name “agent” derives from the 

fact that the agents do work on behalf of some broader objective. 

• Distributed data mining 

Data mining algorithms examine large amounts of data to detect patterns and trends 

in the data, to mine or extract useful information. A traditional example is: examining the 

purchasing patterns of customers in order to profile the customers and enhance the efficacy 

of directed marketing schemes. 



• Grid computing 

Many challenges in making grid computing a reality include: scheduling jobs in 

such a distributed environment, a framework for implementing quality of service and real- 

time guarantees, and, of course, security of individual machines as well as of jobs being 

executed in this setting. 

• Security in distributed systems 

The traditional challenges of security in a distributed setting include: confidentiality 

(ensuring that only authorized processes can access certain information), authentication 

(ensuring the source of received information and the identity of the sending process), and 

availability (maintaining allowed access to services despite malicious actions). The goal is 

to meet these challenges with efficient and scalable solutions. 

A Model of Distributed Computations 

 

1.8 A Distributed Program 

 

A distributed program is composed of a set of n asynchronous processes p1, p2…, pi… ,pn 

that communicate by message passing over the communication network. Without loss of 

generality, we assume that each process is running on a different processor. The processes do not 

share a global memory and communicate solely by passing messages. 

 

Let Cij denote the channel from process pi to process pj and let mij denote a message sent 

by pi to pj . The communication delay is finite and unpredictable. Also, these processes do not 

share a global clock that is instantaneously accessible to these processes. Process execution and 

message transfer are asynchronous – a process may execute an action spontaneously and a process 

sending a message does not wait for the delivery of the message to be complete. 

The global state of a distributed computation is composed of the states of the processes and 

the communication channels. The state of a process is characterized by the state of its local memory 

and depends upon the context. The state of a channel is characterized by the set of messages in 

transit in the channel. 

 

 

 

 



 

1.9 A model of distributed executions 

 

The execution of a process consists of a sequential execution of its actions. The actions are 

atomic and the actions of a process are modeled as three types of events, namely, internal events, 

message send events, and message receive events. Let ex
i denote the xth event at process pi. 

Subscripts and/or superscripts will be dropped when they are irrelevant or are clear from the 

context. For a message m, let send(m) and rec(m) denote its send and receive events, respectively. 

 

The occurrence of events changes the states of respective processes and channels, thus 

causing transitions in the global system state. An internal event changes the state of the 

process at which it occurs. 

 A send event (or a receive event) changes the state of the process that sends (or receives) 

the message and the state of the channel on which the message is sent (or received). An 

internal event only affects the process at which it occurs. The events at a process are linearly 

ordered by their order of occurrence. The execution of process pi produces a sequence of 

events e1, e2 ,.....e x ,....e x 1,...and it is denoted by Hi, 

                                                          i i i i 

 

 

 

 

where hi is the set of events produced by pi and binary relation →i defines a linear order on these 

events. Relation → i expresses causal dependencies among the events of pi. 

 

The send and the receive events signify the flow of information between processes and 

establish causal dependency from the sender process to the receiver process. A relation →msg that 

captures the causal dependency due to message exchange, is defined as follows. For every message 

m that is exchanged between two processes, we have 

 

send(m) →msg rec(m) 

 



 

 

 

Figure: The space–time diagram of a distributed execution. 

 

Relation →msg defines causal dependencies between the pairs of corresponding send and 

receive events. The evolution of a distributed execution is depicted by a space–time diagram. 

Figure shows the space–time diagram of a distributed execution involving three processes. A 

horizontal line represents the progress of the process; a dot indicates an event; a slant arrow 

indicates a message transfer. 

 

Generally, the execution of an event takes a finite amount of time; however, since we assume 

that an event execution is atomic (hence, indivisible and instantaneous), it is justified to denote 

it as a dot on a process line. In this figure, for process p1, the second event is a message send 

event, the third event is an internal event, and the fourth event is a message receive event. 

Causal precedence relation 

 

The execution of a distributed application results in a set of distributed events produced by 

the processes. Let H =⋃ihi denote the set of events executed in a distributed computation. Next, 

we define a binary relation on the set H, denoted as →, that expresses causal dependencies between 

events in the distributed execution. 

 

 

The causal precedence relation induces an irreflexive partial order on the events of a 

distributed computation that is denoted as H=(H, →). 



 

For any two events ei and ej , ei ej denotes the fact that event ej does not directly or 

transitively dependent on event ei. That is, event ei does not causally affect event ej . Event ej is 

not aware of the execution of ei or any event executed after ei on the same process. 

 

Logical vs. physical concurrency 

 

In a distributed computation, two events are logically concurrent if and only if they do not 

causally affect each other. Physical concurrency, on the other hand, has a connotation that the 

events occur at the same instant in physical time. Note that two or more events may be logically 

concurrent even though they do not occur at the same instant in physical time. 

 

 

Whether a set of logically concurrent events coincide in the physical time or in what order 

in the physical time they occur does not change the outcome of the computation. Therefore, even 

though a set of logically concurrent events may not have occurred at the same instant in physical 

time, for all practical and theoretical purposes, we can assume that these events occurred at the 

same instant in physical time. 

1.10 Models of communication networks 

 

There are several models of the service provided by communication networks, namely, 

FIFO (first-in, first-out), non-FIFO, and causal ordering. In the FIFO model, each channel acts as 

a first-in first-out message queue and thus, message ordering is preserved by a channel. In the non- 

FIFO model, a channel acts like a set in which the sender process adds messages and the receiver 

process removes messages from it in a random order. 

 

A system that supports the causal ordering model satisfies the following property: 

 

 

 

 

That is, this property ensures that causally related messages destined to the same 

destination are delivered in an order that is consistent with their causality relation. Causally ordered 

delivery of messages implies FIFO message delivery. Furthermore, note that CO ⊂ FIFO ⊂ Non- 



FIFO. Causal ordering model is useful in developing distributed algorithms. 

 

Generally, it considerably simplifies the design of distributed algorithms because it 

provides a built-in synchronization. For example, in replicated database systems, it is important 

that every process responsible for updating a replica receives the updates in the same order to 

maintain database consistency 

 

1.11 Global state of a distributed system 

 

The global state of a distributed system is a collection of the local states of its components, namely, 

the processes and the communication channels. The state of a process at any time is defined by the 

contents of processor registers, stacks, local memory, etc. and depends on the local context of the 

distributed application. The state of a channel is given by the set of messages in transit in the 

channel. 

Global state 

 

The global state of a distributed system is a collection of the local states of the processes 

and the channels. Notationally, the global state GS is defined as, 

 

 

 

For a global snapshot to be meaningful, the states of all the components of the distributed 

system must be recorded at the same instant. This will be possible if the local clocks at processes 

were perfectly synchronized or there was a global system clock that could be instantaneously read 

by the processes. However, both are impossible. 

 

However, it turns out that even if the state of all the components in a distributed system has 

not been recorded at the same instant, such a state will be meaningful provided every message that 

is recorded as received is also recorded as sent. Basic idea is that an effect should not be present 

without its cause. A message cannot be received if it was not sent; that is, the state should not 

violate causality. Such states are called consistent global states and are meaningful global states. 

Inconsistent global states are not meaningful in the sense that a distributed system can never be in 

an inconsistent state. 

 



i 

A global state GS =    is a consistent global state iff it satisfies the 

following condition: 

 

 

 

That is, channel state and process state  must not include any message that process 

pi 

sent after executing event e xi . 

 

In the distributed execution of Figure, a global  state GS1 consisting of local states 

{ LS 
1 

, LS 3 , LS 3 , LS 
2 

} is inconsistent because the state of p2 has recorded the receipt of message 
m12, however, the state of p1 has not recorded its send. On the contrary, a global state GS2 

consisting of local states { LS 1 , LS 3 , LS 3 , LS 2 } is consistent; all the channels are empty except

C21 that contains message 



 

 

 
 

 

Figure: The space–time diagram of a distributed execution. 

 

 

A global state GS = is transitless iff, 

 

 

 

Thus, all channels are recorded as empty in a transitless global state. A global 

state is strongly consistent iff it is transitless as well as consistent. Note that in Figure, the 

global state 

consisting of local states { LS 1 , LS 3 , LS 3 , LS 2 } is strongly consistent. 

1 2 3 4 

 

Recording the global state of a distributed system is an important paradigm when one 

is interested in analyzing, monitoring, testing, or verifying properties of distributed 

applications, systems, and algorithms. Design of efficient methods for recording the global 

state of a distributed system is an important problem. 

 

 


