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Logical Time 

Definition 

A system of logical clocks consists of a time domain T and a logical clock C. Elements of 

T form a partially ordered set over a relation <. This relation is usually called the happened before 

or causal precedence. Intuitively, this relation is analogous to the earlier than relation provided by 

the physical time. The logical clock C is a function that maps an event e in a distributed system to 

an element in the time domain T, denoted as C(e) and called the timestamp of e, and is defined as 

follows: 

C : H  T, 

 

such that the following property is satisfied: for two events ei and ej , 

ei → ej C(ei) < C(ej ). This monotonicity property is called the clock consistency condition. 

 

When T and C satisfy the following condition, for two events 

 

ei and ej , ei →ej ⇔ C(ei) < 

C(ej ), the system of clocks is said to be strongly consistent. 

Implementing logical clocks 

 

Implementation of logical clocks requires addressing two issues: data structures local to 

every process to represent logical time and a protocol (set of rules) to update the data structures to 

ensure the consistency condition. 

Each process pi maintains data structures that allow it the following two capabilities: 

1. A local logical clock, denoted by lci, that helps process pi measure its own progress. 



2. A logical global clock, denoted by gci, that is a representation of process pi’s local view of 

the logical global time. It allows this process to assign consistent timestamps to its local 

events. Typically, lci is a part of gci. 

The protocol ensures that a process’s logical clock, and thus its view of the global time, is 

managed consistently. The protocol consists of the following two rules: 

1. R1 This rule governs how the local logical clock is updated by a process when it executes 

an event (send, receive, or internal). 

2. R2 This rule governs how a process updates its global logical clock to update its view of 

the global time and global progress. It dictates what information about the logical time is 

piggybacked in a message and how this information is used by the receiving process to 

update its view of the global time. 

Scalar time 

Definition: 

The scalar time representation was proposed by Lamport in 1978 as an attempt to totally 

order events in a distributed system. Time domain in this representation is the set of non-negative 

integers. The logical local clock of a process pi and its local view of the global time are squashed 

into one integer variable Ci. 

Rules R1 and R2 to update the clocks are as follows: 

 

1. R1 Before executing an event (send, receive, or internal), process pi executes the 

following: 

Ci :=Ci+d (d > 0) 

 

In general, every time R1 is executed, d can have a different value, and this value 

may be application-dependent. However, typically d is kept at 1 because this is able to 

identify the time of each event uniquely at a process, while keeping the rate of increase of 

d to its lowest level. 

 

 

 

 



2. R2 Each message piggybacks the clock value of its sender at sending time. When 

a process pi receives a message with timestamp Cmsg, it executes the following 

actions: 

1. Ci := max(Ci, Cmsg,); 

2. execute R1; 

3. deliver the message. 

Figure shows the evolution of scalar time with d=1. 

 

Figure: Evolution of scalar time 

 

Basic properties 

Consistency property 

Clearly, scalar clocks satisfy the monotonicity and hence the consistency property: 

for two events ei and ej, ei →ej =⇒ C(ei) < C(ej ). 

Total Ordering 

 

Scalar clocks can be used to totally order events in a distributed system. The main problem 

in totally ordering events is that two or more events at different processes may have an identical 

timestamp. 

Event counting 

 

If the increment value d is always 1, the scalar time has the following interesting property: 

if event e has a timestamp h, then h−1 represents the minimum logical duration, counted in units 

of events, required before producing the event e; we call it the height of the event e. 

 



No strong consistency 

 

The system of scalar clocks is not strongly consistent; that is, for two events ei and 

ej, C(ei) < C(ej) ⇏ei→ej 

Vector time 

 Definition 

The system of vector clocks was developed independently by Fidge, Mattern, and 

Schmuck. In the system of vector clocks, the time domain is represented by a set of n-dimensional 

non-negative integer vectors. 

Each process pi maintains a vector vti[1…n], where vti[i] is the local logical clock of pi and 

describes the logical time progress at process pi. vti [j] represents process pi’s latest knowledge of 

process pi local time. If vti [j] = x, then process pi knows that local time at process pi has progressed 

till x. The entire vector vti constitutes pi’s view of the global logical time and is used to timestamp 

events. 

Process pi uses the following two rules R1 and R2 to update its clock: 

 

1. R1 Before executing an event, process pi updates its local logical time as follows: 

 

 

2. R2 Each message m is piggybacked with the vector clock vt of the sender process at sending 

time. On the receipt of such a message (m,vt), process pi executes the following sequence 

of actions: 

1. update its global logical time as follows: 

 

 

 

2. execute R1; 

3. deliver the message m. 

 

The timestamp associated with an event is the value of the vector clock of its process when 

the event is executed. Figure shows an example of vector clocks progress with the increment value 

d = 1. Initially, a vector clock is [0,0,0,….]. 



 

 
 

 

Figure: Evolution of vector time 

 

The following relations are defined to compare two vector timestamps, vh and vk: 

 

Basic Properties 

Isomorphism 

If events in a distributed system are timestamped using a system of vector clocks, we have 

the following property. If two events x and y have timestamps vh and vk, respectively, then 

 

 

Thus, there is an isomorphism between the set of partially ordered events produced by a 

distributed computation and their vector timestamps. This is a very powerful, useful, and 

interesting property of vector clocks. 

Strong consistency 

 

The system of vector clocks is strongly consistent; thus, by examining the vector timestamp 

of two events, we can determine if the events are causally related. 



Event counting 

 

If d is always 1 in rule R1, then the ith component of vector clock at process pi, vti[i], 

denotes the number of events that have occurred at pi until that instant. So, if an event e has 

timestamp vh, vh[j] denotes the number of events executed by process pj that causally precede e. 

Applications 

 

Since vector time tracks causal dependencies exactly, it finds a wide variety of applications. 

For example, they are used in distributed debugging, implementations of causal ordering 

communication and causal distributed shared memory, establishment of global breakpoints, and in 

determining the consistency of checkpoints in optimistic recovery. 

Size of vector clocks 

 

• A vector clock provides the latest known local time at each other process. If this 

information in the clock is to be used to explicitly track the progress at every other process, 

then a vector clock of size n is necessary. 

• A popular use of vector clocks is to determine the causality between a pair of events. Given 

any events e and f, the test for e ≺ f if and only if T(e) < T(f), which requires a comparison 

of the vector clocks of e and f. Although it appears that the clock of size n is necessary, that 

is not quite accurate. It can be shown that a size equal to the dimension of the partial order 

(E,≺) is necessary, where the upper bound on this dimension is n. 

Physical clock synchronization: NTP 

 

In distributed systems, there is no global clock or common memory. Each processor has its 

own internal clock and its own notion of time. In practice, these clocks can easily drift apart by 

several seconds per day, accumulating significant errors over time. Also, because different clocks 

tick at different rates, they may not remain always synchronized although they might be 

synchronized when they start. 

Some practical examples that stress the need for synchronization are listed below: 

 

• In database systems, the order in which processes perform updates on a database is 

important to ensure a consistent, correct view of the database. To ensure the right 

ordering of events, a common notion of time between co-operating processes becomes 

imperative. 



a 

• It is quite common that distributed applications and network protocols use timeouts, 

and their performance depends on how well physically dispersed processors are time- 

synchronized. Design of such applications is simplified when clocks are synchronized. 

Clock synchronization is the process of ensuring that physically distributed processors have 

a common notion of time. It has a significant effect on many problems like secure systems, fault 

diagnosis and recovery, scheduled operations, database systems, and real-world clock values. 

Due to different clocks rates, the clocks at various sites may diverge with time, and 

periodically a clock synchronization must be performed to correct this clock skew in distributed 

systems. Clocks are synchronized to an accurate real-time standard like UTC (Universal 

Coordinated Time). Clocks that must not only be synchronized with each other but also have to 

adhere to physical time are termed physical clocks. 

Definitions and terminology 

 

We provide the following definitions. Ca and Cb are any two clocks. 

 

• Time: The time of a clock in a machine p is given by the function Cp(t), where 

Cp(t) = t for a perfect clock. 

• Frequency: Frequency is the rate at which a clock progresses. The frequency at time t 

of clock Ca is C ' (t) 

• Offset: Clock offset is the difference between the time reported by a clock and the real 

time. The offset of the clock Ca is given by Ca(t)−t. The offset of clock Ca relative to 

Cb at time t ≥ 0 is given by Ca(t)− Cb(t). 

• Skew: The skew of a clock is the difference in the frequencies of the clock and the 

perfect clock. The skew of a clock Ca relative to clock Cb at time t is C ' (t) − C 
' 

(t) . 

                                                                                                                                a b 



a 

• Drift (rate): The drift of clock Ca is the second derivative of the clock value with 

respect to time, namely, 

C '' (t) - C '' (t) 

C '' (t) . The drift of clock Ca relative to clock Cb at time t is 

a b 

Clock inaccuracies 

 

Physical clocks are synchronized to an accurate real-time standard like UTC (Universal 

Coordinated Time). 

However, due to the clock inaccuracy discussed above, a timer (clock) is said to be working 

within its specification if 

 

 

where constant 𝜌 is the maximum skew rate specified by the manufacturer. 

 

Offset delay estimation method 

 

The Network Time Protocol (NTP), which is widely used for clock synchronization on the 

Internet, uses the the offset delay estimation method. The design of NTP involves a hierarchical 

tree of time servers. The primary server at the root synchronizes with the UTC. The next level 

contains secondary servers, which act as a backup to the primary server. At the lowest level is the 

synchronization subnet which has the clients. 

Clock offset and delay estimation 

 

 

 

Figure: The behavior of fast, slow, and perfect clocks with respect to UTC 



In practice, a source node cannot accurately estimate the local time on the target node due 

to varying message or network delays between the nodes. This protocol employs a very common 

practice of performing several trials and chooses the trial with the minimum delay. Recall that 

Cristian’s remote clock reading method also relied on the same strategy to estimate message delay. 

 

 

 

Figure: Offset and delay estimation 

 

Figure shows how NTP timestamps are numbered and exchanged between peers A and B. 

Let T1, T2, T3, T4 be the values of the four most recent timestamps as shown. Assume that clocks 

A and B are stable and running at the same speed. Let a = T1 − T3 and b = T2 − T4. If the network 

delay difference from A to B and from B to A, called differential delay, is small, the clock offset 

𝜃 and roundtrip delay 𝛿 of B relative to A at time T4 are approximately given by the following: 

 

 

 

 

 

 

Figure: Timing diagram for the two servers 



Each NTP message includes the latest three timestamps T1, T2, and T3, while T4 is 

determined upon arrival. Thus, both peers A and B can independently calculate delay and offset 

using a single bidirectional message stream as shown in Figure. 

Message ordering and group communication 

    Message ordering paradigms 

The order of delivery of messages in a distributed system is an important aspect of 

system executions because it determines the messaging behavior that can be expected by the 

distributed program. Distributed program logic greatly depends on this order of delivery. 

Several orderings on messages have been defined: 

 

(i) non-FIFO 

(ii) FIFO 

(iii) causal order, and 

(iv) synchronous order 

 

Asynchronous executions 

 

An asynchronous execution (or A-execution) is an execution (E, ≺) for which the 

causality relation is a partial order. 

On any logical link between two nodes in the system, messages may be delivered in 

any order, not necessarily first-in first-out. Such executions are also known as non-FIFO 

executions. Although each physical link typically delivers the messages sent on it in FIFO 

order due to the physical properties of the medium, a logical link may be formed as a 

composite of physical links and multiple paths may exist between the two end points of the 

logical link. As an example, the mode of ordering at the Network Layer in connectionless 

networks such as IPv4 is non-FIFO. The following Figure (a) illustrates an A-execution under 

non-FIFO ordering. 

 

a) An A-execution 

that is not a FIFO 

execution. 

(b) An A-

execution that is 

also a FIFO 



FIFO executions 

 

A FIFO execution is an A-execution in which, 

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ, (𝑠~𝑠′𝑎𝑛𝑑 𝑟 ~ 𝑟′𝑎𝑛𝑑 𝑠 ≺ s′) ⇒ 𝑟 ≺ 

r′ 

 

On any logical link in the system, messages are necessarily delivered in the order in which 

they are sent. Although the logical link is inherently non- FIFO, most network protocols 

provide a connection-oriented service at the transport layer. 

A simple algorithm to implement a FIFO logical channel over a non-FIFO channel 

would use a separate numbering scheme to sequence the messages on each logical channel. 

The sender assigns and appends a (sequence_num, connection_id) tuple to each message. The 

receiver uses a buffer to order the incoming messages as per the sender’s sequence numbers, 

and accepts only the “next” message in sequence. The above Figure (b) illustrates an A-

execution under FIFO ordering. 

Causally ordered (CO) executions 

 

A CO execution is an A-execution in which,  

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ, (𝑟 ~ 𝑟′𝑎𝑛𝑑 𝑠 ≺ s′) ⇒ 𝑟 ≺ r′ 

If two send events 𝑠 and 𝑠′ are related by causality ordering (not physical time ordering), 

then a causally ordered execution requires that their corresponding receive events 𝑟 and 𝑟′ 

occur in the same order at all common destinations. Note that if 𝑠 and 𝑠′ are not related by 

causality, then CO is vacuously satisfied because the antecedent of the implication is false. 

Causal order is useful for applications requiring updates to shared data, implementing 

distributed shared memory, and fair resource allocation such as granting of requests for 

distributed mutual exclusion. 

To implement CO, we distinguish between the arrival of a message and its delivery. 

A message m that arrives in the local OS buffer at Pi may have to be delayed until the messages 

that were sent to Pi causally before m was sent (the “overtaken” messages) have arrived and 

are processed by the application. The delayed message m is then given to the application for 

processing. The event of an application processing an arrived message is referred to as a 

delivery event (instead of as a receive event) for emphasis. 



Definition of causal order (CO) for implementations 

 

If send(m1) ≺ send(m2) then for each common destination d of messages m1 and m2, 

deliverd (m
1 )≺ deliverd(m2) must be satisfied. 

Observe that if the definition of causal order is restricted so that m1 and m2 are sent by 

the same process, then the property degenerates into the FIFO property. In a FIFO execution, 

no message can be overtaken by another message between the same (sender, receiver) pair of 

processes. The FIFO property which applies on a per-logical channel basis can be extended 

globally to give the CO property. In a CO execution, no message can be overtaken by a chain 

of messages between the same (sender, receiver) pair of processes. 

Message order (MO) 

 

A MO execution is an A-execution in which, 

 

for all (𝑠, 𝑟) and (𝑠′, 𝑟′) ∈ Τ 𝑠 ≺ s′ ⇒ ¬(𝑟 ≺ r′) 

 

Empty-interval execution 

 

An execution (E,≺) is an empty-interval (EI) execution if  for each pair  of events 

(𝑠, 𝑟) ∈ 𝑇, the open interval set {𝑥 ∈ 𝐸|𝑠 ≺ 𝑥 ≺ 𝑟} in the partial order is empty. 

 

Synchronous execution (SYNC) 

 

When all the communication between pairs of processes uses synchronous send and receive 

primitives, the resulting order is the synchronous order. As each synchronous communication 

involves a handshake between the receiver and the sender, the corresponding send and receive 

events can be viewed as occuring instantaneously and atomically. 

 

 

a) Execution 
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In a timing diagram, the “instantaneous” message communication can be shown by 

bidirectional vertical message lines. Figure (a) shows a synchronous execution on an 

asynchronous system. Figure (b) shows the equivalent timing diagram with the corresponding 

instantaneous message communication. 

The “instantaneous communication” property of synchronous executions requires a 

modified definition of the causality relation because for each (𝑠, 𝑟) ∈ 𝑇, the send event is not 

causally ordered before the receive event. The two events are viewed as being atomic and 

simultaneous, and neither event precedes the other. 

Causality in a synchronous execution 

 

The synchronous causality relation ≪ on E is the smallest transitive relation that 

satisfies the following: 

 

 

Synchronous execution 

 

A synchronous execution (or S-execution) is an execution (E, ≪) for which the 

causality relation ≪ is a partial order. 

Timestamping a synchronous execution 

 

An execution (E, ≺) is synchronous if and only if there exists a mapping from E 

to T (scalar timestamps) such that 

 

 

By assuming that a send event and its corresponding receive event are viewed 

atomically, i.e., s(M) ≺ r(M) and r(M) ≺ s(M), it follows that for any events ei and ej that are 

not the send event and the receive event of the same message, ei ≺ ej =⇒ T(ei) < T(ej). 

 

 



Asynchronous execution with synchronous communication 

When all the communication between pairs of processes is by using synchronous send and 

receive primitives, the resulting order is synchronous order. The algorithms run on asynchronous 

systems will not work in synchronous system and vice versa is also true. 

 

Realizable Synchronous Communication (RSC) 

 

• An execution can be modeled to give a total order that extends the partial order (E, 

≺). 

• In an A-execution, the messages can be made to appear instantaneous if there exist a 

linear extension of the execution, such that each send event is immediately followed by 

its corresponding receive event in this linear extension. 

 

 

• In the non-separated linear extension, if the adjacent send event and its corresponding 

receive event are viewed atomically, then that pair of events shares a common past and a 

common future with each other. 

Crown 

 

The crown is <(s1, r1) (s2, r2)> as we have s1 ≺ r2 and s2 ≺ r1. Cyclic dependencies may 

exist in a crown. The crown criterion states that an A-computation is RSC, i.e., it can be realized 

on a system with synchronous communication, if and only if it contains no crown. 

 

Timestamp criterion for RSC execution 

An execution (E, ≺) is RSC if and only if there exists a mapping from E to T (scalar 

timestamps) such that 

 
 

Hierarchy of ordering paradigms 

 

The orders of executions are: 

• Synchronous order (SYNC) 

• Causal order (CO) 

• FIFO order (FIFO) 

• Non FIFO order (non-FIFO) 

A-execution can be realized under synchronous communication is called a realizable with 

synchronous communication (RSC). 

Let E be an execution. A crown of size k in E is a sequence <(si, ri), i ∈{0,…, k-1}> of pairs of 
corresponding send and receive events such that: s0 ≺ r1, s1 ≺ r2, sk−2 ≺ rk−1, sk−1 ≺ r0. 

Non-separated linear extension is an extension of (E, ≺) is a linear extension of (E, ≺) such that for 
each pair (s, r) ∈ T, the interval { x∈ E s ≺ x ≺ r } is empty. 

A A-execution (E, ≺) is an RSC execution if and only if there exists a non-separated linear 
extension of the partial order (E, ≺). 



The Execution order have the following results 

 

 For an A-execution, A is RSC if and only if A is an S-execution. 

 RSC ⊂ CO ⊂ FIFO ⊂ A 

 This hierarchy is illustrated in Figure 2.3(a), and example executions of each class are 

shown side-by-side in Figure 2.3(b) 

 The above hierarchy implies that some executions belonging to a class X will not belong to 

any of the classes included in X. The degree of concurrency is most in A andleast in SYNC. 

 A program using synchronous communication is easiest to develop and verify. 

 A program using non-FIFO communication, resulting in an A execution, is hardest to 

design and verify. 

  

Fig (a) Fig (b) 

 

Fig 2.3: Hierarchy of execution classes 

 

Simulations 

− The events in the RSC execution are scheduled as per some non-separated linear extension, 

and adjacent (s, r) events in this linear extension are executed sequentially in the 

synchronous system. 

− The partial order of the asynchronous execution remains unchanged. 

− If an A-execution is not RSC, then there is no way to schedule the events to make them 

RSC, without actually altering the partial order of the given A-execution. 

− However, the following indirect strategy that does not alter the partial order can be 

used. 

− Each channel Ci,j is modeled by a control process Pi,j that simulates the channel buffer. 

− An asynchronous communication from i to j becomes a synchronous communication from 

i to Pi,j followed by a synchronous communication from Pi,j to j. 



− This enables the decoupling of the sender from the receiver, a feature that is essential in 

asynchronous systems. 

 

Fig 2.4: Modeling channels as processes to simulate an execution using 

asynchronous primitives on synchronous system 

Synchronous programs on asynchronous systems 

− A (valid) S-execution can be trivially realized on an asynchronous system by 

scheduling the messages in the order in which they appear in the S-execution. 

The partial order of the S-execution remains unchanged but the communication occurs on 

an asynchronous system that uses asynchronous communication primitives. 

− Once a message send event is scheduled, the middleware layer waits for acknowledgment; 

after the ack is received, the synchronous send primitive completes. 

SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM 

 

Non deterministic programs 

The partial ordering of messages in the distributed systems makes the repeated runs of the 

same program will produce the same partial order, thus preserving deterministic nature. 

But sometimes the distributed systems exhibit non determinism: 

• A receive call can receive a message from any sender who has sent a message, if the 

expected sender is not specified. 

• Multiple send and receive calls which are enabled at a process can be executed in an 

interchangeable order. 

• If i sends to j, and j sends to i concurrently using blocking synchronous calls, there 

results a deadlock. 

• There is no semantic dependency between the send and the immediately following 

receive at each of the processes. If the receive call at one of the processes can be 

scheduled before the send call, then there is no deadlock. 

 

 

 

 



Rendezvous 

Rendezvous systems are a form of synchronous communication among an arbitrary 

number of asynchronous processes. All the processes involved meet with each other, i.e., 

communicate synchronously with each other at one time. Two types of rendezvous systems are 

possible: 

• Binary rendezvous: When two processes agree to synchronize. 

• Multi-way rendezvous: When more than two processes agree to synchronize. 

 

Features of binary rendezvous: 

• For the receive command, the sender must be specified. However, multiple recieve 

commands can exist. A type check on the data is implicitly performed. 

• Send and received commands may be individually disabled or enabled. A command is 

disabled if it is guarded and the guard evaluates to false. The guard would likely contain 

an expression on some local variables. 

•  Synchronous communication is implemented by scheduling messages under the 

covers using asynchronous communication. 

• Scheduling involves pairing of matching send and receives commands that are both 

enabled. The communication events for the control messages under the covers do not alter 

the partial order of the execution. 

 

Binary rendezvous algorithm 

If multiple interactions are enabled, a process chooses one of them and tries to synchronize 

with the partner process. The problem reduces to one of scheduling messages satisfying the 

following constraints: 

• Schedule on-line, atomically, and in a distributed manner. 

• Schedule in a deadlock-free manner (i.e., crown-free). 

• Schedule to satisfy the progress property in addition to the safety property. 

Steps in Bagrodia algorithm 

1. Receive commands are forever enabled from all processes. 

2.  A send command, once enabled, remains enabled until it completes, i.e., it is not 

possible that a send command gets before the send is executed. 

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break 

potential crowns that arise. 

4. Each process attempts to schedule only one send event at any time. 

 

The message (M) types used are: M, ack(M), request(M), and permission(M). Execution 

events in the synchronous execution are only the send of the message M and receive of the message 

M. The send and receive events for the other message types – ack(M), request(M), and 

permission(M) which are control messages. The messages request(M), ack(M), and permission(M) 

use M’s unique tag; the message M is not included in these messages. 

 

 

(message types) 



 

M, ack(M), request(M), permission(M) 

 

(1) Pi wants to execute SEND(M) to a lower priority process Pj: 

 

Pi executes send(M) and blocks until it receives ack(M) from Pj . The send event SEND(M) now 

completes. 

Any M’ message (from a higher priority processes) and request(M’) request for synchronization 

(from a lower priority processes) received during the blocking period are queued. 

(2) Pi wants to execute SEND(M) to a higher priority process Pj: 

 

(2a) Pi seeks permission from Pj by executing send(request(M)). 

 

// to avoid deadlock in which cyclically blocked processes queue // 

messages. (2b) While Pi is waiting for permission, it remains unblocked. 

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M’ by 

scheduling a RECEIVE(M’) event and then executes send(ack(M’)) to Pk. 

(ii) If a request(M’) arrives from a lower priority process Pk, Pi executes send(permission(M’)) to 

Pk and blocks waiting for the messageM’. WhenM’ arrives, the RECEIVE(M’) event is executed. 

 

(2c) When the permission(M) arrives, Pi knows partner Pj is synchronized and Pi executes 

send(M). The SEND(M) now completes. 

(3) request(M) arrival at Pi from a lower priority process Pj: 

 

At the time a request(M) is processed by Pi, process Pi executes send(permission(M)) to Pj and 

blocks waiting for the message M. When M arrives, the RECEIVE(M) event is executed and the 

process unblocks. 

(4) Message M arrival at Pi from a higher priority process Pj: 

 

At the time a message M is processed by Pi, process Pi executes RECEIVE(M) (which is assumed 

to be always enabled) and then send(ack(M)) to Pj . 

(5) Processing when Pi is unblocked: 

When Pi is unblocked, it dequeues the next (if any) message from the queue and processes it 

as a message arrival (as per rules 3 or 4). 

 



 

Fig 2.5: Bagrodia Algorithm 

 

GROUP COMMUNICATION 

Group communication is done by broadcasting of messages. A message broadcast is the 

sending of a message to all members in the distributed system. The communication may be 

• Multicast: A message is sent to a certain subset or a group. 

• Unicasting: A point-to-point message communication. 

The network layer protocol cannot provide the following functionalities: 

▪ Application-specific ordering semantics on the order of delivery of messages. 

▪ Adapting groups to dynamically changing membership. 

▪ Sending multicasts to an arbitrary set of processes at each send event. 

▪ Providing various fault-tolerance semantics. 

▪ The multicast algorithms can be open or closed group. 

 

Differences between closed and open group algorithms: 

 
Closed group algorithms Open group algorithms 

If sender is also one of the receiver in 
the multicast algorithm, then it is closed 
group 
algorithm. 

If sender is not a part of the 

communication group, then it is open 

group algorithm. 

They are specific and easy to implement. They are more general, difficult to design 
and expensive. 

It does not support large systems where 
client processes have short life. 

It can support large systems. 

 

CAUSAL ORDER (CO) 

In the context of group communication, there are two modes of communication: causal 

order and total order. Given a system with FIFO channels, causal order needs to be explicitly 

enforced by a protocol. The following two criteria must be met by a causal 
ordering protocol: 

• Safety: In order to prevent causal order from being violated, a message M that arrives at a 

process may need to be buffered until all system wide messages sent in the causal past of 

the send (M) event to that same destination have already arrived. The arrival of a message 

is transparent to the application process. The delivery event corresponds tothe receive 

event in the execution model. 

• Liveness: A message that arrives at a process must eventually be delivered to the process. 

The Raynal–Schiper–Toueg algorithm 

• Each message M should carry a log of all other messages sent causally before M’s send 

event, and sent to the same destination dest(M). 

• The Raynal–Schiper–Toueg algorithm canonical algorithm is a representative of several 



algorithms that reduces the size of the local space and message space overhead by various 

techniques. 

• This log can then be examined to ensure whether it is safe to deliver a message. 

• All algorithms aim to reduce this log overhead, and the space and time overhead of 

maintaining the log information at the processes. 

• To distribute this log information, broadcast and multicast communication is used. 

• The hardware-assisted or network layer protocol assisted multicast cannot efficiently 

provide features: 

➢ Application-specific ordering semantics on the order of delivery of messages. 

➢ Adapting groups to dynamically changing membership. 

➢ Sending multicasts to an arbitrary set of processes at each send event. 

➢ Providing various fault-tolerance semantics 

 

Causal Order (CO) 

An optimal CO algorithm stores in local message logs and propagates on messages, information of 

the form d is a destination of M about a messageM sent in the causal past, as long as and only as 

long as: 

 

Propagation Constraint I: it is not known that the message M is delivered to d. 

 

Propagation Constraint II: it is not known that a message has been sent to d in the causal future 

of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that the 

message M will be delivered to d in CO. 

 

Fig 2.6: Conditions for causal ordering 

The Propagation Constraints also imply that if either (I) or (II) is false, the information “d 



∈ M.Dests” must not be stored or propagated, even to remember that (I) or (II) has been 

falsified: 

• not in the causal future of Deliverd(M1, a) 

• not in the causal future of e k, c where d ∈Mk,cDests and there is no other message 

sent causally between Mi,a and Mk, c to the same destination d. 

Information about messages: 

(i) not known to be delivered 

(ii) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source, 

timestamp, destination) information. 

Information about messages already delivered and messages guaranteed to be delivered in CO 

is implicitly tracked without storing or propagating it, and is derived from the explicit 

information. The algorithm for the send and receive operations is given in Fig. 2.7 a) and b). 

Procedure SND is executed atomically. Procedure RCV is executed atomically except for a 

possible interruptionin line 2a where a non-blocking wait is required to meet the Delivery 

Condition. 

 

 

Fig 2.7 a) Send algorithm by Kshemkalyani–Singhal to optimally implement causal 

ordering 

 

 

 

 

 



 

 

 

 

Fig 2.7 b) Receive algorithm by Kshemkalyani–Singhal to optimally implement causal 

ordering 

The data structures maintained are sorted row–major and then column–major: 

1. Explicit tracking: 

Tracking of (source, timestamp, destination) information for messages (i) not known to be 

delivered and (ii) not guaranteed tobe delivered in CO, is done explicitly using the I.Dests 

field of entries inlocal logs at nodes and o.Dests field of entries in messages. 

▪ Sets li,aDestsand oi,a. Dests contain explicit information of destinations to which Mi,ais not 

guaranteed to be delivered in CO and is not known to be delivered. 

▪ The information about d ∈Mi,a .Destsis propagated up to the earliestevents on all causal 

paths from (i, a) at which it is known that Mi,a isdelivered to d or is guaranteed to be delivered 

to d in CO. 

 



2. Implicit tracking: 

▪ Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be 

delivered in CO, is performed implicitly. 

▪ The information about messages (i) already delivered or (ii) guaranteed tobe delivered in 

CO is deleted and not propagated because it is redundantas far as enforcing CO is 

concerned. 

▪ It is useful in determiningwhat information that is being carried in other messages and is 

being storedin logs at other nodes has become redundant and thus can be purged. 

▪ Thesemantics are implicitly stored and propagated. This information about messages that 

are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked without 

explicitly storing it. 

▪ The algorithm derives it from the existing explicit information about messages (i) not 

known to be delivered and (ii) not guaranteed to be delivered in CO, by examining only 

oi,aDests or li,aDests, which is a part of the explicit information. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.8: Illustration of propagation constraints 

Multicasts M5,1and M4,1 

Message M5,1 sent to processes P4 and P6 contains the piggybacked information M5,1. 

Dest= {P4, P6}. Additionally, at the send event (5, 1), the information M5,1.Dests = {P4,P6} is 

also inserted in the local log Log5. When M5,1 is delivered to P6, the (new) piggybacked 

information P4 ∈ M5,1 .Dests is stored in Log6 as M5,1.Dests ={P4} information about P6 ∈ 

M5,1.Dests which was needed for routing, must not be stored in Log6 because of constraint I. In 

the same way when M5,1 is delivered to process P4 

at event (4, 1), only the new piggybacked information P6 ∈ M5,1 .Dests is inserted in Log4 as 

M5,1.Dests =P6which is later propagated duringmulticast M4,2. 

 

Multicast M4,3 

At event (4, 3), the information P6 ∈M5,1.Dests in Log4 is propagated onmulticast M4,3only to 

process P6 to ensure causal delivery using the DeliveryCondition. The piggybacked 

information on message M4,3sent to process P3must not contain this information because of 



constraint II. As long as any future message sent to P6 is delivered in causal order w.r.t. M4,3sent 

to P6, it will also be delivered in causal order w.r.t. M5,1. And as M5,1 is already delivered to 

P4, the information M5,1Dests = ∅ is piggybacked on M4,3 sent to P 3. Similarly, the information 

P6 ∈ M5,1Dests must be deleted from Log4 as it will no longer be needed, because of constraint 

II. M5,1Dests = ∅ is stored in Log4 to remember that M5,1 has been delivered or is guaranteed 

to be delivered in causal order to all its destinations. 

 

Learning implicit information at P2 and P3 

When message M4,2is received by processes P2 and P3, they insert the (new) piggybacked 

information in their local logs, as information M5,1.Dests = P6. They both continue to store this 

in Log2 and Log3 and propagate this information on multicasts until they learn at events (2, 4) 

and (3, 2) on receipt of messages M3,3and M4,3, respectively, that any future message is 

expected to be delivered in causal order to process P6, w.r.t. M5,1sent toP6. Hence by constraint 

II, this information must be deleted from Log2 andLog3. The flow of events is given by; 

• When M4,3 with piggybacked information M5,1Dests = ∅ is received byP3at (3, 2), this 

is inferred to be valid current implicit information aboutmulticast M5,1because the log 

Log3 already contains explicit informationP6 ∈M5,1.Dests about that multicast. 

Therefore, the explicit informationin Log3 is inferred to be old and must be deleted to 

achieve optimality. M5,1Dests is set to ∅ in Log3. 

• The logic by which P2 learns this implicit knowledge on the arrival of M3,3is identical. 

Processing at P6 

When message M5,1 is delivered to P6, only M5,1.Dests = P4 is added to Log6. Further, P6 

propagates only M5,1.Dests = P4 on message M6,2, and this conveys the current implicit 

information M5,1 has been delivered to P6 by its very absence in the explicit information. 
• When the information P6 ∈ M5,1Dests arrives on M4,3, piggybacked as M5,1 .Dests 

= P6 it is used only to ensure causal delivery of M4,3 using the Delivery Condition, 

and is not inserted in Log6 (constraint I) – further, the presence of M5,1 .Dests = P4 

in Log6 implies the implicit information that M5,1 has already been delivered to P6. 

Also, the absence of P4 in M5,1 .Dests in the explicit piggybacked information 

implies the implicit information that M5,1 has been delivered or is guaranteed to be 

delivered in causal order to P4, and, therefore, M5,1. Dests is set to ∅ in Log6. 

• When the information P6 ∈ M5,1 .Dests arrives on M5,2 piggybacked as M5,1. Dests 

= {P4, P6} it is used only to ensure causal delivery of M4,3 using the Delivery 

Condition, and is not inserted in Log6 because Log6 contains M5,1 .Dests = ∅, which 

gives the implicit information that M5,1 has been delivered or is guaranteed to be 

delivered in causal order to both P4 and P6. 

Processing at P1 

• When M2,2arrives carrying piggybacked information M5,1.Dests = P6 this (new) 

information is inserted in Log1. 

• When M6,2arrives with piggybacked information M5,1.Dests ={P4}, P1learns implicit 

information M5,1has been delivered to P6 by the very absence of explicit information 



P6 ∈ M5,1.Dests in the piggybacked information, and hence marks information P6 ∈ 

M5,1Dests for deletion from Log1. Simultaneously, M5,1Dests = P6 in Log1 implies 

the implicit information that M5,1has been delivered or is guaranteed to be delivered in 

causal order to P4.Thus, P1 also learns that the explicit piggybacked information 

M5,1.Dests = P4 is outdated. M5,1.Dests in Log1 is set to ∅. 

• The information “P6 ∈M5,1.Dests piggybacked on M2,3,which arrives at P 1, is 

inferred to be outdated usingthe implicit knowledge derived from M5,1.Dest= ∅” in 

Log1. 

TOTAL ORDER 

 

 

Centralized Algorithm for total ordering 

 

Each process sends the message it wants to broadcast to a centralized process, which relays 

all the messages it receives to every other process over FIFO channels. 

 

 

Complexity: Each message transmission takes two message hops and exactly n messages in 

a system of n processes. 

 

 

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is not 

an elegant solution. 

 

Three phase distributed algorithm 

 

Three phases can be seen in both sender and receiver side. 

Sender side 

Phase 1 

• In the first phase, a process multicasts the message M with a locally unique tag and 

the local timestamp to the group members. 

For each pair of processes Pi and Pj and for each pair of messages Mx and My that are delivered to 
both the processes, Pi is delivered Mx before My if and only if Pj is delivered Mxbefore My. 



 

Phase 2 

• The sender process awaits a reply from all the group members who respond with a 

tentative proposal for a revised timestamp for that message M. 

• The await call is non-blocking. 

Phase 3 

• The process multicasts the final timestamp to the group. 

 

 

Fig 2.9: Sender side of three phase distributed algorithm 

Receiver Side 

Phase 1 

• The receiver receives the message with a tentative timestamp. It updates the variable 

priority that tracks the highest proposed timestamp, then revises the proposed 

timestamp to the priority, and places the message with its tag and the revised timestamp 

at the tail of the queue temp_Q. In the queue, the entry is marked as undeliverable. 

Phase 2 

• The receiver sends the revised timestamp back to the sender. The receiver then waits in 

a non-blocking manner for the final timestamp. 

 

 



Phase 3 

• The final timestamp is received from the multicaster. The corresponding message 

entry in temp_Q is identified using the tag, and is marked as deliverable after the 

revised timestamp is overwritten by the final timestamp. 

• The queue is then resorted using the timestamp field of the entries as the key. As the 

queue is already sorted except for the modified entry for the message under 

consideration, that message entry has to be placed in its sorted position in the queue. 

• If the message entry is at the head of the temp_Q, that entry, and all consecutive 

subsequent entries that are also marked as deliverable, are dequeued from temp_Q, 

and enqueued in deliver_Q. 

Complexity 

This algorithm uses three phases, and, to send a message to n − 1 processes, it uses 3(n – 1) 

messages and incurs a delay of three message hops 

 

GLOBAL STATE AND SNAPSHOT RECORDING ALGORITHMS 

• A distributed computing system consists of processes that do not share a common 

memory and communicate asynchronously with eachother by message passing. 

• Each component ofhas a local state. The state of the process is the local memory 

and a history of its activity. 

• The state of achannel is characterized by the set of messages sent along the channel 

lessthe messages received along the channel. The global state of a 

distributedsystem is a collection of the local states of its components. 

• If shared memory were available, an up-to-date state of the entire systemwould be 

available to the processes sharing the memory. 

• The absence ofshared memory necessitates ways of getting a coherent and 

complete view ofthe system based on the local states of individual processes. 

• A meaningfulglobal snapshot can be obtained if the components of the distributed 

systemrecord their local states at the same time. 

• This would be possible if thelocal clocks at processes were perfectly synchronized 

or if there were aglobal system clock that could be instantaneously read by the 

processes. 

• If processes read time froma single common clock, various 

indeterminatetransmission delays during the read operation will cause the 

processes toidentify various physical instants as the same time. 

System Model 

• The system consists of a collection of n processes, p1, p2,…,pn that are 

connected by channels. 

• Let Cij denote the channel from process pi to process pj. 

• Processes and channels have states associated with them. 

• The state of a process at any time is defined by the contents of processor 



registers, stacks, local memory, etc., and may be highly dependent on the local 

context of the distributed application. 

• The state of channel Cij, denoted by SCij, is given by the set of messages in 

transit in the channel. 

• The events that may happen are: internal event, send (send (mij)) and receive 

(rec(mij)) events. 

• The occurrences of events cause changes in the processstate. 

• A channel is a distributed entity and its state depends on the local states 

of the processes on which it is incident. 

• The transit function records the state of the channel Cij. 

• In the FIFO model, each channel acts as a first-in first-out message queue and, 

thus, message ordering is preserved by a channel. 

• In the non-FIFO model, achannel acts like a set in which the sender process 

adds messages and thereceiver process removes messages from it in a random 

order. 

A consistent global state 

The global state of a distributed system is a collection of the local states ofthe 

processes and the channels. The global state is given by: 

 

 
 

The two conditions for global state are: 

 
 

Condition 1 preserves law of conservation of messages.Condition C2 states that in 

the collected global state, for everyeffect, its cause must be present. 

 

 

 

➢ In a consistent global state, every message that is recorded as received isalso 

recorded as sent. Such a global state captures the notion of causalitythat a message 

cannot be received if it was not sent. 

➢ Consistent global statesare meaningful global states and inconsistent global states 

are not meaningful in the sense that a distributed system can never be in an 

inconsistentstate. 

Interpretation of cuts 

• Cuts in a space–time diagram provide a powerful graphical aid in representingand 

reasoning about the global states of a computation. A cut is a line joiningan 

arbitrary point on each process line that slices the space–time diagraminto a PAST 

Law of conservation of messages: Every messagemijthat is recorded as sent in the local state of a 

process pi must be capturedin the state of the channel Cij or in the collected local state of the 

receiver process pj. 



and a FUTURE. 

• A consistent global state corresponds to a cut in which every messagereceived in 

the PAST of the cut has been sent in the PAST of that cut. Sucha cut is known as 

a consistent cut. 

• In a consistent snapshot, all the recorded local states of processes are concurrent; 

that is, the recorded local state of no process casuallyaffects the recorded local state 

of any other process. 

Issues in recording global state 

The non-availability of global clock in distributed system, raises the following issues: 

Issue 1: 

How to distinguish between the messages to be recorded in the snapshot from those 

not to be recorded? 
Answer: 

2.8.4.1 Any message that is sent by a process before recording its snapshot,must 

be recorded in the global snapshot (from C1). 

2.8.4.2 Any message that is sent by a process after recording its snapshot, mustnot 

be recorded in the global snapshot (from C2). 

 

Issue 2: 

How to determine the instant when a process takes its 

snapshot? The answer 
Answer: 

A process pj must record its snapshot before processing a message mij that was sent 

by process pi after recording its snapshot. 

SNAPSHOT ALGORITHMS FOR FIFO CHANNELS 

Each distributed application has number of processes running on different 

physical servers. These processes communicate with each other through messaging 

channels. 

 

Snapshots are required to: 

• Checkpointing 

• Collecting garbage 

• Detecting deadlocks 

• Debugging 

Chandy–Lamport algorithm 

 The algorithm will record a global snapshot for each process channel. 

 The Chandy-Lamport algorithm uses a control message, called a marker. 

 Aftera site has recorded its snapshot, it sends a marker along all of its 

A snapshot captures the local states of each process along with the state of each communication channel. 



outgoingchannels before sending out any more messages. 

  Since channels are FIFO, amarker separates the messages in the channel into those 

to be included in the snapshot from those not to be recorded inthe snapshot. 

 This addresses issue I1. The role of markers in a FIFO systemis to act as delimiters 

for the messages in the channels so that the channelstate recorded by the process at 

the receiving end of the channel satisfies thecondition C2. 

 

Fig 2.10: Chandy–Lamport algorithm 

 

Initiating a snapshot 

 Process Pi initiates the snapshot 

 Pi records its own state and prepares a special marker message. 

 Send the marker message to all other processes. 

 Start recording all incoming messages from channels Cij for j not equal to i. 

Propagating a snapshot 

 For all processes Pjconsider a message on channel Ckj. 

 If marker message is seen for the first time: 

− Pjrecords own sate and marks Ckj as empty 

− Send the marker message to all other processes. 

− Record all incoming messages from channels Clj for 1 not equal to j or k. 

− Else add all messages from inbound channels. 

 

Terminating a snapshot 

 All processes have received a marker. 

 All process have received a marker on all the N-1 incoming channels. 

 A central server can gather the partial state to build a global snapshot. 

 



Correctness of the algorithm 

 Since a process records its snapshot when itreceives the first marker on any 

incoming channel, no messages that followmarkers on the channels incoming to it 

are recorded in the process’s snapshot. 

 A process stops recording the state of an incoming channel whena marker is 

received on that channel. 

 Due to FIFO property of channels, itfollows that no message sent after the marker 

on that channel is recorded inthe channel state. Thus, condition C2 is satisfied. 

 When a process pj receives message mij that precedes the marker on channel 

Cij, it acts as follows: ifprocess pj has not taken its snapshot yet, then it includes 

mij in its recorded snapshot. Otherwise, it records mij in the state of the channel 

Cij. Thus,condition C1 is satisfied. 

Complexity 

The recording part of a single instance of the algorithm requires O(e) messages 

and O(d) time, where e is the number of edges in the network and d is thediameter of 

the network. 

Properties of the recorded global state 

The recorded global state may not correspond to any of the global states that 

occurred during the computation. 

This happens because a process can change its state asynchronously before the 

markers it sent are received by other sites and the other sites record their states. 

But the system could have passed through the recorded global states in some 

equivalent executions. 

The recorded global state is a valid state in an equivalent execution and if a stable 

property (i.e., a property that persists) holds in the system before the snapshot algorithm 

begins, it holds in the recorded global snapshot. 

Therefore, a recorded global state is useful in detecting stable properties. 

 


