
UNIT III DISTRIBUTED MUTEX AND DEADLOCK 

Distributed Mutual exclusion Algorithms: Introduction – Preliminaries – Lamport’s 

algorithm – Ricart- Agrawala’s Algorithm –– Token-Based Algorithms – Suzuki-Kasami’s 

Broadcast Algorithm; Deadlock Detection in Distributed Systems: Introduction – System 

Model – Preliminaries – Models of Deadlocks – Chandy-Misra-Haas Algorithm for the AND 

model and OR Model. 

3.1 DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS 

• Mutual exclusion is a concurrency control property which is introduced to 

prevent race conditions. 

• It is the requirement that a process cannot access a shared resource while 

another concurrent process is currently present or executing the same resource. 

 

• Message passing is the sole means for implementing distributed mutual exclusion. 

• The decision as to which process is allowed access to the CS next is arrived at by 

message passing, in which each process learns about the state of all other processes 

in some consistent way. 

• There are three basic approaches for implementing distributed mutual exclusion: 

1. Token-based approach: 

− A unique token is shared among all the sites. 

− If a site possesses the unique token, it is allowed to enter its critical section 

− This approach uses sequence number to order requests for the critical section. 

− Each requests for critical section contains a sequence number. This 

sequence number is used to distinguish old and current requests. 

− This approach insures Mutual exclusion as the token is unique. 

− Eg: Suzuki-Kasami’s Broadcast Algorithm 

2. Non-token-based approach: 

− A site communicates with other sites in order to determine which sites 

should execute critical section next. This requires exchange of two or more 

successive round of messages among sites. 

− This approach use timestamps instead of sequence number to order 

requests for the critical section. 

− When ever a site make request for critical section, it gets a timestamp. 

Timestamp is also used to resolve any conflict between critical section 

requests. 

− All algorithm which follows non-token based approach maintains a logical 

clock. Logical clocks get updated according to Lamport’s scheme. 

− Eg: Lamport's algorithm, Ricart–Agrawala algorithm 

Mutual exclusion in a distributed system states that only one process is allowed to execute the 

critical section (CS) at any given time. 



3. Quorum-based approach: 

− Instead of requesting permission to execute the critical section from all 

other sites, Each site requests only a subset of sites which is called a 

quorum. 

− Any two subsets of sites or Quorum contains a common site. 

− This common site is responsible to ensure mutual exclusion. 

− Eg: Maekawa’s Algorithm 

3.1.1 Preliminaries 
• The system consists of N sites, S1, S2, S3, …, SN. 

• Assume that a single process is running on each site. 

• The process at site Si is denoted by pi. All these processes 

communicate asynchronously over an underlying communication 

network. 

• A process wishing to enter the CS requests all other or a subset of processes by 

sending REQUEST messages, and waits for appropriate replies before entering 

the CS. 

• While waiting the process is not allowed to make further requests to enter the CS. 

• A site can be in one of the following three states: requesting the CS, executing the 

CS, or neither requesting nor executing the CS. 

• In the requesting the CS state, the site is blocked and cannot make further requests 

for the CS. 

• In the idle state, the site is executing outside the CS. 

• In the token-based algorithms, a site can also be in a state where a site holding 

the token is executing outside the CS. Such state is referred to as the idle token 

state. 

• At any instant, a site may have several pending requests for CS. A site queues 

up these requests and serves them one at a time. 

• N denotes the number of processes or sites involved in invoking the critical 

section, T denotes the average message delay, and E denotes the average critical 

section execution time. 

3.1.2 Requirements of mutual exclusion algorithms 

• Safety property: 

The safety property states that at any instant, only one process can execute the 

critical section. This is an essential property of a mutual exclusion algorithm. 

• Liveness property: 

This property states the absence of deadlock and starvation. Two or more 

sites should not endlessly wait for messages that will never arrive. In addition, a site 

must not wait indefinitely to execute the CS while other sites are repeatedly 

executing the CS. That is, every requesting site should get an opportunity to execute 

the CS in finite time. 

 



• Fairness: 

Fairness in the context of mutual exclusion means that each process gets a 

fair chance to execute the CS. In mutual exclusion algorithms, the fairness property 

generally means that the CS execution requests are executed in order of their arrival 

in the system. 

3.1.3 Performance metrics 

➢ Message complexity: This is the number of messages that are required per 

CS execution by a site. 

➢ Synchronization delay: After a site leaves the CS, it is the time required and 

before the next site enters the CS. (Figure 3.1) 

➢ Response time: This is the time interval a request waits for its CS execution to 

be over after its request messages have been sent out. Thus, response time does 

not include the time a request waits at a site before its request messages have 

been sent out. (Figure 3.2) 

➢ System throughput: This is the rate at which the system executes requests for 

the CS. If SD is the synchronization delay and E is the average critical section 

execution time. 

 

 

Figure 3.1 Synchronization delay 

 

Figure 3.2 Response 

Time Low and High Load Performance: 

▪ The performance of mutual exclusion algorithms is classified as two special 

loading conditions, viz., “low load” and “high load”. 

▪ The load is determined by the arrival rate of CS execution requests. 

▪ Under low load conditions, there is seldom more than one request for the 



critical section present in the system simultaneously. 

▪ Under heavy load conditions, there is always a pending request for critical section 

at a site. 

 

Best and worst case performance 

▪ In the best case, prevailing conditions are such that a performance metric attains 

the best possible value. For example, the best value of the response time is a 

roundtrip message delay plus the CS execution time, 2T +E. 

▪ For examples, the best and worst values of the response time are achieved when 

load is, respectively, low and high; 

▪ The best and the worse message traffic is generated at low and heavy load 

conditions, respectively. 

3.2 LAMPORT’S ALGORITHM 

• Lamport’s Distributed Mutual Exclusion Algorithm is a permission based 

algorithm proposed by Lamport as an illustration of his synchronization scheme 

for distributed systems. 

• In permission based timestamp is used to order critical section requests and to 

resolve any conflict between requests. 

• In Lamport’s Algorithm critical section requests are executed in the increasing 

order of timestamps i.e a request with smaller timestamp will be given permission 

toexecute critical section first than a request with larger timestamp. 

• Three type of messages ( REQUEST, REPLY and RELEASE) are used 

and communication channels are assumed to follow FIFO order. 

• A site send a REQUEST message to all other site to get their permission to 

enter critical section. 

• A site send a REPLY message to requesting site to give its permission to enter 

the critical section. 

• A site send a RELEASE message to all other site upon exiting the critical section. 

• Every site Si, keeps a queue to store critical section requests ordered by 

their timestamps. 

• request_queuei denotes the queue of site Si. 

• A timestamp is given to each critical section request using Lamport’s logical clock. 

• Timestamp is used to determine priority of critical section requests. Smaller 

timestamp gets high priority over larger timestamp. The execution of critical 

section request is always in the order of their timestamp. 



 

Fig 3.1: Lamport’s distributed mutual exclusion 

algorithm 

To enter Critical section: 

 When a site Si wants to enter the critical section, it sends a request message 

Request(tsi, i) to all other sites and places the request on request_queuei. Here, Tsi 

denotes the timestamp of Site Si. 

 When a site Sj receives the request message REQUEST(tsi, i) from site Si, it 

returns a timestamped REPLY message to site Si and places the request of site Si 

on request_queuej 

To execute the critical section: 

• A site Si can enter the critical section if it has received the message with timestamp 

larger than (tsi, i) from all other sites and its own request is at the top of 

request_queuei. 

To release the critical section: 

 When a site Si exits the critical section, it removes its own request from the top of 

its request queue and sends a timestamped RELEASE message to all other sites. 

When a site Sj receives the timestamped RELEASE message from site Si, it 

removes the request of Sia from its request queue. 

 
Correctness 

Theorem: Lamport’s algorithm achieves mutual exclusion. 

Proof: Proof is by contradiction. 

 Suppose two sites Si and Sj are executing the CS concurrently. For this to happen 

conditions L1 and L2 must hold at both the sites concurrently. 

 This implies that at some instant in time, say t, both Si and Sj have their own 



requests at the top of their request queues and condition L1 holds at them. Without 

loss of generality, assume that Si ’s request has smaller timestamp than the request 

of Sj . 

 From condition L1 and FIFO property of the communication channels, it is clear 

that at instant t the request of Si must be present in request queuej when Sj was 

executing its CS. This implies that Sj ’s own request is at the top of its own request 

queue whena smaller timestamp request, Si ’s request, is present in the request 

queuej – a contradiction! 

 
Theorem: Lamport’s algorithm is fair. 

Proof: The proof is by contradiction. 

 Suppose a site Si ’s request has a smaller timestamp than the request of another site 

Sj and Sj is able to execute the CS before Si . 

 For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies 

that at some instant in time say t, Sj has its own request at the top of its queue and it 

has also received a message with timestamp larger than the timestamp of its request 
from all other sites. 

 But request queue at a site is ordered by timestamp, and according to our 

assumption Si has lower timestamp. So Si ’s request must be placed ahead of the Sj 

’s request in the request queuej . This is a contradiction! 

 

Message Complexity: 

Lamport’s Algorithm requires invocation of 3(N – 1) messages per critical section 

execution. These 3(N – 1) messages involves 

• (N – 1) request messages 

• (N – 1) reply messages 

• (N – 1) release messages 

 

Drawbacks of Lamport’s Algorithm: 

• Unreliable approach: failure of any one of the processes will halt the 

progress of entire system. 

• High message complexity: Algorithm requires 3(N-1) messages per critical 

section invocation. 

Performance: 

Synchronization delay is equal to maximum message transmission time. It requires 3(N 

– 1) messages per CS execution. Algorithm can be optimized to 2(N – 1) messages by 

omitting the REPLY message in some situations. 

 

 

 

 

 

 

 

 

 

 



 

3.3 RICART–AGRAWALA ALGORITHM 

• Ricart–Agrawala algorithm is an algorithm to for mutual exclusion in a distributed 

system proposed by Glenn Ricart and Ashok Agrawala. 

• This algorithm is an extension and optimization of Lamport’s Distributed Mutual 

Exclusion Algorithm. 

• It follows permission based approach to ensure mutual exclusion. 

• Two type of messages ( REQUEST and REPLY) are used and communication 

channels are assumed to follow FIFO order. 

• A site send a REQUEST message to all other site to get their permission to 

enter critical section. 

• A site send a REPLY message to other site to give its permission to enter the critical 

section. 

• A timestamp is given to each critical section request using Lamport’s logical clock. 

• Timestamp is used to determine priority of critical section requests. 

• Smaller timestamp gets high priority over larger timestamp. 

• The execution of critical section request is always in the order of their timestamp. 

 

Fig 3.2: Ricart–Agrawala algorithm 

 

To enter Critical section: 

• When a site Si wants to enter the critical section, it send a timestamped 

REQUEST message to all other sites. 

• When a site Sj receives a REQUEST message from site Si, It sends a REPLY 

message to site Si if and only if Site Sj is neither requesting nor currently executing 

the critical section. 

• In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than its 

own request. 

• Otherwise the request is deferred by site Sj. 

 

To execute the critical section: 



Site Si enters the critical section if it has received the REPLY message from all other 

sites. 

To release the critical section: 
Upon exiting site Si sends REPLY message to all the deferred requests. 

 

Theorem: Ricart-Agrawala algorithm achieves mutual exclusion. 

Proof: Proof is by contradiction. 

▪ Suppose two sites Si and Sj ‘ are executing the CS concurrently and Si ’s request has 

higher priority than the request of Sj . Clearly, Si received Sj ’s request after it has 

made its own request. 
▪ Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj 

(in response to Sj ’s request) before Si exits the CS. 

▪ However, this is impossible because Sj ’s request has lower priority. 

Therefore,Ricart- Agrawala algorithm achieves mutual exclusion. 

 

Message Complexity: 

Ricart–Agrawala algorithm requires invocation of 2(N – 1) messages per critical section 

execution. These 2(N – 1) messages involve: 

• (N – 1) request messages 

• (N – 1) reply messages 

Drawbacks of Ricart–Agrawala algorithm: 

• Unreliable approach: failure of any one of node in the system can halt the progress 

of the system. In this situation, the process will starve forever. The problem of 

failure of node can be solved by detecting failure after some timeout. 

Performance: 

Synchronization delay is equal to maximum message transmission time It requires 

2(N – 1) messages per Critical section execution. 

 

3.4 MAEKAWA‘s ALGORITHM 

• Maekawa’s Algorithm is quorum based approach to ensure mutual exclusion in 

distributed systems. 

 

 



 

Fig 3.3: Maekawa‘s Algorithm 

• In permission based algorithms like Lamport’s Algorithm, Ricart-Agrawala 

Algorithm etc. a site request permission from every other site but in quorum based 

approach, a site does not request permission from every other site but from a subset 

ofsites which is called quorum. 

• Three type of messages ( REQUEST, REPLY and RELEASE) are used. 

• A site send a REQUEST message to all other site in its request set or quorum to get 

their permission to enter critical section. 

• A site send a REPLY message to requesting site to give its permission to enter 

the critical section. 

• A site send a RELEASE message to all other site in its request set or quorum 

upon exiting the critical section 

 

The following are the conditions for Maekawa’s algorithm: 

 

Maekawa used the theory of projective planes and showed that N = K(K – 1)+ 1. 

This relation gives |Ri|= √N. 

 

To enter Critical section: 

• When a site Si wants to enter the critical section, it sends a request message 

REQUEST(i) to all other sites in the request set Ri. 

• When a site Sj receives the request message REQUEST(i) from site Si, it returns a 

REPLY message to site Si if it has not sent a REPLY message to the site from the 

time it received the last RELEASE message. Otherwise, it queues up the request. 



To execute the critical section: 

• A site Si can enter the critical section if it has received the REPLY message from all 

the site in request set Ri 

To release the critical section: 

• When a site Si exits the critical section, it sends RELEASE(i) message to all 

other sites in request set Ri 

• When a site Sj receives the RELEASE(i) message from site Si, it send REPLY 

message to the next site waiting in the queue and deletes that entry from the queue 

• In case queue is empty, site Sj update its status to show that it has not sent 

any REPLY message since the receipt of the last RELEASE message. 

Correctness 

Theorem: Maekawa’s algorithm achieves mutual exclusion. 

Proof: Proof is by contradiction. 

▪ Suppose two sites Si and Sj are concurrently executing the CS. 

▪ This means site Si received a REPLY message from all sites in Ri and concurrently 

site Sj was able to receive a REPLY message from all sites in Rj . 
▪ If Ri ∩ Rj = {Sk }, then site Sk must have sent REPLY messages to both Si and Sj 

concurrently, which is a contradiction 

 

Message Complexity: 

Maekawa’s Algorithm requires invocation of 3√N messages per critical section execution 

as the size of a request set is √N. These 3√N messages involves. 

• √N request messages 

• √N reply messages 

• √N release messages 

Drawbacks of Maekawa’s Algorithm: 

This algorithm is deadlock prone because a site is exclusively locked by other sites 

and requests are not prioritized by their timestamp. 

 

Performance: 

Synchronization delay is equal to twice the message propagation delay time. It requires 3√n 

messages per critical section execution. 

 

3.5 SUZUKI–KASAMI‘s BROADCAST ALGORITHM 

• Suzuki–Kasami algorithm is a token-based algorithm for achieving mutual 

exclusion in distributed systems. 

• This is modification of Ricart–Agrawala algorithm, a permission based (Non-

token based) algorithm which uses REQUEST and REPLY messages to ensure 

mutual exclusion. 

• In token-based algorithms, A site is allowed to enter its critical section if it 

possesses the unique token. 

• Non-token based algorithms uses timestamp to order requests for the critical 

section where as sequence number is used in token based algorithms. 



• Each requests for critical section contains a sequence number. This sequence 

number is used to distinguish old and current requests. 

 

Fig 3.4: Suzuki–Kasami‘s broadcast algorithm 

To enter Critical section: 

• When a site Si wants to enter the critical section and it does not have the token then 

it increments its sequence number RNi[i] and sends a request message REQUEST(i, 

sn) to all other sites in order to request the token. 

• Here sn is update value of RNi[i] 

• When a site Sj receives the request message REQUEST(i, sn) from site Si, it 

sets RNj[i] to maximum of RNj[i] and sni.eRNj[i] = max(RNj[i], sn). 

After updating RNj[i], Site Sj sends the token to site Si if it has token and RNj[i] 

= LN[i] + 1 

To execute the critical section: 

• Site Si executes the critical section if it has acquired the token. 

To release the critical section: 

After finishing the execution Site Si exits the critical section and does following: 

• sets LN[i] = RNi[i] to indicate that its critical section request RNi[i] has been executed 

• For every site Sj, whose ID is not prsent in the token queue Q, it appends its ID to Q 

if RNj[j] = LN[j] + 1 to indicate that site Sj has an outstanding request. 

• After above updation, if the Queue Q is non-empty, it pops a site ID from the Q 

and sends the token to site indicated by popped ID. 

• If the queue Q is empty, it keeps the token 

Correctness 

Mutual exclusion is guaranteed because there is only one token in the system and a site holds 

the token during the CS execution. 
Theorem: A requesting site enters the CS in finite time. 

Proof: Token request messages of a site Si reach other sites in finite time. 

Since one of these sites will have token in finite time, site Si ’s request will be placed in the 



token queue in finite time. 

Since there can be at most N − 1 requests in front of this request in the token queue, site Si 

will get the token and execute the CS in finite time. 

 

 

Message Complexity: 

The algorithm requires 0 message invocation if the site already holds the idle token at the 

time of critical section request or maximum of N message per critical section execution. This 

N messages involves 

• (N – 1) request messages 

• 1 reply message 

Drawbacks of Suzuki–Kasami Algorithm: 

• Non-symmetric Algorithm: A site retains the token even if it does not have 

requested for critical section. 

Performance: 

Synchronization delay is 0 and no message is needed if the site holds the idle token at the 

time of its request. In case site does not holds the idle token, the maximum synchronization 

delay is equal to maximum message transmission time and a maximum of N message is 

required per critical section invocation. 

 

3.6 DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS 

Deadlock can neither be prevented nor avoided in distributed system as the system 

is so vast that it is impossible to do so. Therefore, only deadlock detection can be 

implemented. The techniques of deadlock detection in the distributed system require the 

following: 

• Progress:The method should be able to detect all the deadlocks in the system. 

• Safety: The method should not detect false of phantom deadlocks. 

There are three approaches to detect deadlocks in distributed systems. 

Centralized approach: 

• Here there is only one responsible resource to detect deadlock. 

• The advantage of this approach is that it is simple and easy to implement, while the 

drawbacks include excessive workload at one node, single point failure which in 

turns makes the system less reliable. 

Distributed approach: 

• In the distributed approach different nodes work together to detect deadlocks. 

No single point failure as workload is equally divided among all nodes. 

• The speed of deadlock detection also increases. 

Hierarchical approach: 

• This approach is the most advantageous approach. 

• It is the combination of both centralized and distributed approaches of 

deadlock detection in a distributed system. 

•  In this approach, some selected nodes or cluster of nodes are responsible for 

deadlock detection and these selected nodes are controlled by a single node. 



 

System Model 

 

• A distributed program is composed of a set of n asynchronous 

processes p1, p2, . . 

. , pi , . . . , pn that communicates by message passing over the communication 

network. 

• Without loss of generality we assume that each process is 

running on a different processor. 

• The processors do not share a common global memory and 

communicate solely by passing messages over the 

communication network. 

• There is no physical global clock in the system to which 
processes have instantaneous access. 

• The communication medium may deliver messages out of order, 

messages may be lost garbled or duplicated due to timeout and 

retransmission, processors may fail and communication links 

may go down. 
We make the following assumptions: 

• The systems have only reusable resources. 

• Processes are allowed to make only exclusive access to resources. 

• There is only one copy of each resource. 

• A process can be in two states: running or blocked. 

• In the running state (also called active state), a process 

has all the needed resources and is either executing or is 
ready for execution. 

• In the blocked state, a process is waiting to acquire some resource. 

Wait for graph 

This is used for deadlock deduction. A graph is drawn based on the request and 

acquirement of the resource. If the graph created has a closed loop or a cycle, then there is 

a deadlock. 

 

 

Fig 3.5: Wait for graph 
 
 
 
 

 



Preliminaries 

 

3.6.1 Deadlock Handling Strategies 

Handling of deadlock becomes highly complicated in distributed systems because 

no site has accurate knowledge of the current state of the system and because every inter-

site communication involves a finite and unpredictable delay. There are three strategies for 

handling deadlocks: 

• Deadlock prevention: 

− This is achieved either by having a process acquire all the needed 

resources simultaneously before it begins executing or by preempting a 

process which holds the needed resource. 

− This approach is highly inefficient and impractical in distributed systems. 

• Deadlock avoidance: 

− A resource is granted to a process if the resulting global system state is 

safe. This is impractical in distributed systems. 

• Deadlock detection: 

− This requires examination of the status of process-resource interactions 

for presence of cyclic wait. 

− Deadlock detection in distributed systems seems to be the best approach 

to handle deadlocks in distributed systems. 

3.6.2 Issues in deadlock Detection 

Deadlock handling faces two major issues 

1. Detection of existing deadlocks 

2. Resolutionof detected deadlocks 

Deadlock Detection 

− Detection of deadlocks involves addressing two issues namely maintenance of 

the WFG and searching of the WFG for the presence of cycles or knots. 

− In distributed systems, a cycle or knot may involve several sites, the search for 

cycles greatly depends upon how the WFG of the system is represented across the 

system. 

− Depending upon the way WFG information is maintained and the search for cycles 

is carried out, there are centralized, distributed, and hierarchical algorithms for 

deadlock detection in distributed systems. 

Correctness criteria 

A deadlock detection algorithm must satisfy the following two conditions: 

1. Progress-No undetected deadlocks: 

The algorithm must detect all existing deadlocks in finite time. In other words, 

after all wait-for dependencies for a deadlock have formed, the algorithm should not wait 

for any more events to occur to detect the deadlock. 
2. Safety -No false deadlocks: 

The algorithm should not report deadlocks which do not exist. This is also called as 

called phantom or false deadlocks. 

 

Resolution of a Detected Deadlock 



• Deadlock resolution involves breaking existing wait-for dependencies between 

the processes to resolve the deadlock. 

• It involves rolling back one or more deadlocked processes and assigning 

their resources to blocked processes so that they can resume execution. 

• The deadlock detection algorithms propagate information regarding 

wait-for dependencies along the edges of the wait-for graph. 

• When a wait-for dependency is broken, the corresponding information 

should be immediately cleaned from the system. 

• If this information is not cleaned in a timely manner, it may result in 

detection of phantom deadlocks. 

3.7 MODELS OF DEADLOCKS 

The models of deadlocks are explained based on their hierarchy. The diagrams illustrate 

the working of the deadlock models. Pa, Pb, Pc, Pdare passive processes that had already 

acquired the resources. Peis active process that is requesting the resource. 

 

3.7.1 Single Resource Model 

• A process can have at most one outstanding request for only one unit of a resource. 

• The maximum out-degree of a node in a WFG for the single resource model can 

be 1, the presence of a cycle in the WFG shall indicate that there is a deadlock. 

Fig 3.6: Deadlock in single resource model 

3.7.2 AND Model 

• In the AND model, a passive process becomes active (i.e., its activation 

condition is fulfilled) only after a message from each process in its dependent 

set has arrived. 

• In the AND model, a process can request more than one resource simultaneously and 

the request is satisfied only after all the requested resources are granted to the 

process. 

• The requested resources may exist at different locations. 

• The out degree of a node in the WFG for AND model can be more than 1. 

• The presence of a cycle in the WFG indicates a deadlock in the AND model. 

• Each node of the WFG in such a model is called an AND node. 

• In the AND model, if a cycle is detected in the WFG, it implies a deadlock but not 

vice versa. That is, a process may not be a part of a cycle, it can still be 

deadlocked. 



 

Fig 3.7: Deadlock in AND 

model 

 

3.7.3 OR Model 

 

• A process can make a request for numerous resources simultaneously and the 

request is satisfied if any one of the requested resources is granted. 

• Presence of a cycle in the WFG of an OR model does not imply a 

deadlock in the OR model. 

• In the OR model, the presence of a knot indicates a deadlock. 

 

• With every blocked process, there is an associated set of processes called 

dependent set. 

• A process shall move from an idle to an active state on receiving a grant 

message from any of the processes in its dependent set. 

• A process is permanently blocked if it never receives a grant message from any of 

the processes in its dependent set. 

• A set of processes S is deadlocked if all the processes in S are permanently blocked. 

• In short, a processis deadlocked or permanently blocked, if the following 

conditions are met: 

1. Each of the process is the set S is blocked. 

2. The dependent set for each process in S is a subset of S. 

3. No grant message is in transit between any two processes in set S. 

• A blocked process P is the set S becomes active only after receiving a grant 

message from a process in its dependent set, which is a subset of S. 

 

Fig 3.8: OR Model 

 

Deadlock in OR model: a process Pi is blocked if it has a pending OR request to be satisfied. 



3.7.4 Model (p out of q model) 

• This is a variation of AND-OR model. 

• This allows a request to obtain any k available resources from a pool of n resources. 

Both the models are the same in expressive power. 

• This favours more compact formation of a request. 

• Every request in this model can be expressed in the AND-OR 

model and vice-versa. 

•  Note that AND requests for p resources can be 

stated as  and OR requests for p resources can be 

stated as  

 

Fig 3.9: p out of q Model 

 

3.7.5 Unrestricted model 

• No assumptions are made regarding the underlying structure of resource requests. 

• In this model, only one assumption that the deadlock is stable is made and hence it is 

the most general model. 

• This model helps separate concerns: Concerns about properties of the problem (stability 

and deadlock) are separated from underlying distributed systems computations (e.g., 

message passing versus synchronous communication). 

 

3.8 KNAPP’S CLASSIFICATION OF DISTRIBUTED DEADLOCK 

DETECTION ALGORITHMS 

The four classes of distributed deadlock detection algorithm are: 

1. Path-pushing 

2. Edge-chasing 

3. Diffusion computation 

4. Global state detection 

 

3.8.1 Path Pushing algorithms 

 

• In path pushing algorithm, the distributed deadlock detection are detected 

by maintaining an explicit global wait for graph. 

• The basic idea is to build a global WFG (Wait For Graph) for each site of 

the distributed system. 

• At each site whenever deadlock computation is performed, it sends its local WFG 

to all the neighbouring sites. 



• After the local data structure of each site is updated, this updated WFG is then passed 

along to other sites, and the procedure is repeated until some site has a sufficiently 

complete picture of the global state to announce deadlock or to establish that 

no deadlocks are present. 

• This feature of sending around the paths of global WFGhas led to the term 

path- pushing algorithms. 

Examples:Menasce-Muntz , Gligor and Shattuck, Ho and Ramamoorthy, Obermarck 

 

3.8.2 Edge Chasing Algorithms 

• The presence of a cycle in a distributed graph structure is be verified by propagating 

special messages called probes, along the edges of the graph. 

• These probe messages are different than the request and reply messages. 

• The formation of cycle can be deleted by a site if it receives the matching probe 

sent by it previously. 

• Whenever a process that is executing receives a probe message, it discards this 

message and continues. 

• Only blocked processes propagate probe messages along their outgoing edges. 

• Main advantage of edge-chasing algorithms is that probes are fixed size messages 

which is normally very short. 

Examples:Chandy et al., Choudhary et al., Kshemkalyani–Singhal, Sinha–Natarajan 

algorithms. 

3.8.3 Diffusing Computation Based Algorithms 

• In diffusion computation based distributed deadlock detection algorithms, 

deadlock detection computation is diffused through the WFG of the system. 

• These algorithms make use of echo algorithms to detect deadlocks. 

• This computation is superimposed on the underlying distributed computation. 

• If this computation terminates, the initiator declares a deadlock. 

• To detect a deadlock, a process sends out query messages along all the outgoing edges 

in the WFG. 

• These queries are successively propagated (i.e., diffused) through the edges of the WFG. 

• When a blocked process receives first query message for a particular deadlock detection 

initiation, it does not send a reply message until it has received a reply message for 

every query it sent. 

• For all subsequent queries for this deadlock detection initiation, it immediately sends 

back a reply message. 

• The initiator of a deadlock detection detects a deadlock when it receives reply for every 

query it had sent out. 

Examples:Chandy–Misra–Haas algorithm for one OR model, Chandy–Herman algorithm 

 

 

 

 

 



3.8.4 Global state detection-based algorithms 

Global state detection based deadlock detection algorithms exploit the following facts: 

1. A consistent snapshot of a distributed system can be obtained without freezing 

the underlying computation. 

2. If a stable property holds in the system before the snapshot collection is initiated, 

this property will still hold in the snapshot. 

Therefore, distributed deadlocks can be detected by taking a snapshot of the system and 

examining it for the condition of a deadlock 

 

3.9 MITCHELL AND MERRITT’S ALGORITHM FOR THE SINGLE-

RESOURCE MODEL 

• This deadlock detection algorithm assumes a single resource model. 

• This detects the local and global deadlocks each process has assumed two 

different labels namely private and public each label is accountant the process id 

guarantees only one process will detect a deadlock. 

• Probes are sent in the opposite direction to the edges of the WFG. 

• When a probe initiated by a process comes back to it, the process declares deadlock. 

Features: 

1. Only one process in a cycle detects the deadlock. This simplifies the deadlock 

resolution – this process can abort itself to resolve the deadlock. This algorithm 

can be improvised by including priorities, and the lowest priority process in a cycle 

detects deadlock and aborts. 

2. In this algorithm, a process that is detected in deadlock is aborted spontaneously, 

even though under this assumption phantom deadlocks cannot be excluded. It can be 

shown, however, that only genuine deadlocks will be detected in the absence of 

spontaneous aborts. 

Each node of the WFG has two local variables, called labels: 

1. a private label, which is unique to the node at all times, though it is not constant. 

2. a public label, which can be read by other processes and which may not be unique. 

 

Each process is represented as u/v where u and u are the public and private labels, 

respectively. Initially, private and public labels are equal for each process. A global 

WFG is maintained and it defines the entire state sof the system. 

 

• The algorithm is defined by the four state transitions as shown in Fig.3.10, where z 

= inc(u, v), and inc(u, v) yields aunique label greater than both u and v labels that 

are notshown do not change. 

• The transitions in the defined by the algorithm are block, activate , transmit 

and detect. 

• Block creates an edge in the WFG. 

• Two messages are needed, one resource request and onemessage back to the 

blocked process to inform it of thepublic label of the process it is waiting for. 

Activate denotes that a process has acquired the resourcefrom the process it was 



waiting for. 

• Transmit propagates larger labels in the opposite directionof the edges by sending 

a probe message. 

Fig 3.10: Four possible state transitions 

 

• Detect means that the probe with the private label of some process has returned to 

it, indicating a deadlock. 

• This algorithm can easily be extended to include priorities, so that whenever 

a deadlock occurs, the lowest priority process gets aborted. 

• This priority based algorithm has two phases. 

1. The first phase is almost identical to the algorithm. 

2. The second phase the smallest priority is propagated around the circle. The 

propagation stops when one process recognizes the propagated priority as 

its own. 

Message Complexity: 

If we assume that a deadlock persists long enough to be detected, the worst-case 

complexity of the algorithm is s(s - 1)/2 Transmit steps, where s is the number of processes 

in the cycle. 

 

 

 

 

 

 

 

 



3.10 CHANDY–MISRA–HAAS ALGORITHM FOR THE AND MODEL 

• This is considered an edge-chasing, probe-based algorithm. 

• It is also considered one of the best deadlock detection algorithms for 

distributed systems. 

• If a process makes a request for a resource which fails or times out, the process 

generates a probe message and sends it to each of the processes holding one or 

more of its requested resources. 

• This algorithm uses a special message called probe, which is a triplet (i, j,k), 

denoting that it belongs to a deadlock detection initiated for process Pi andit is being 

sent by the home site of process Pj to the home site of process Pk. 

• Each probe message contains the following information: 

➢ the id of the process that is blocked (the one that initiates the probe message); 

➢ the id of the process is sending this particular version of the probe message; 

➢ the id of the process that should receive this probe message. 

• A probe message travels along the edges of the global WFG graph, and a deadlock 

is detected when a probe message returns to the process that initiated it. 

• A process Pj is said to be dependent on another process Pk if there exists a sequence 

of processes Pj, Pi1 , Pi2 , . . . , Pim, Pksuch that each process except Pkin the 

sequence is blocked and each process, except the Pj, holds a resource for which the 

previous process in the sequence is waiting. 

• Process Pj is said to be locally dependent upon process Pk if Pj is dependent 

upon Pkand both the processes are on the same site. 

• When a process receives a probe message,it checks to see if it is also waiting 

for resources 

• If not, it is currently using the needed resource and will eventually finish and 

release the resource. 

• If it is waiting for resources, it passes on the probe message to all processes it knows 

to be holding resources it has itself requested. 

• The process first modifies the probe message, changing the sender and receiver ids. 

• If a process receives a probe message that it recognizes as having initiated,it 

knows there is a cycle in the system and thus, deadlock. 

 

 



Data structures 

Each process Pi maintains a boolean array, dependenti, where dependent(j) is true only if Pi 

knows that Pj is dependent on it. Initially, dependenti (j) is false for all i and j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.11: Chandy–Misra–Haas algorithm for the AND 

model Performance analysis 

• In the algorithm, one probe message is sent on every edge of the WFG 

which connects processes on two sites. 

• The algorithm exchanges at most m(n − 1)/2 messages to detect a deadlock 

that involves m processes and spans over n sites. 

• The size of messages is fixed and is very small (only three integer words). 

• The delay in detecting a deadlock is O(n). 

Advantages: 

• It is easy to implement. 

• Each probe message is of fixed length. 

• There is very little computation. 

• There is very little overhead. 

• There is no need to construct a graph, nor to pass graph information to other sites. 

• This algorithm does not find false (phantom) deadlock. 

• There is no need for special data structures. 

 

 



3.11 CHANDY–MISRA–HAAS ALGORITHM FOR THE OR MODEL 

• A blocked process determines if it is deadlocked by initiating a diffusion 

computation. 

• Two types of messages are used in a diffusion computation: 

➢ query(i, j, k) 

➢ reply(i, j, k) 

denoting that they belong to a diffusion computation initiated by a process pi and are 

being sent from process pj to process pk. 

• A blocked process initiates deadlock detection by sending query messages to 

all processes in its dependent set. 

• If an active process receives a query or reply message, it discards it. 

• When a blocked process Pk receives a query(i, j, k) message, it takes the 

following actions: 

1. If this is the first query message received by Pk for the deadlock detection 

initiated by Pi, then it propagates the query to all the processes in its 

dependent set and sets a local variable numk (i) to the number of query 

messages sent. 

2. If this is not the engaging query, then Pk returns a reply message to it 

immediately provided Pk has been continuously blocked since it received 

the corresponding engaging query. Otherwise, it discards the query. 

• Process Pk maintains a boolean variable waitk(i) that denotes the fact that 

it has been continuously blocked since it received the last engaging query 

from process Pi. 

• When a blocked process Pk receives a reply(i, j, k) message, it 

decrements numk(i) only if waitk(i) holds. 

• A process sends a reply message in response to an engaging query only after 

it has received a reply to every query message it has sent out for this engaging 

query. 

• The initiator process detects a deadlock when it has received reply messages 

to all the query messages it has sent out. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

                         Fig 3.12: Chandy–Misra–Haas algorithm for the OR model 

 Performance analysis 

• For every deadlock detection, the algorithm exchanges e query messages ande 

reply messages, where e = n(n – 1) is the number of edges. 

 


