
UNIT IV CONSENSUS AND RECOVERY

Consensus and Agreement Algorithms: Problem Definition – Overview of Results – Agreement in a

Failure-Free System(Synchronous and Asynchronous) – Agreement in Synchronous Systems with

Failures; Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues in

Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm -

Algorithm for Asynchronous Checkpointing and Recovery

CONSENSUS PROBLEM IN ASYNCHRONOUS SYSTEMS.

Table: Overview of results on agreement.

f denotes number of failure-prone processes. n is the total number of processes.

Failure

Mode

Synchronous system

(message-passing and

shared memory)

Asynchronous

system

(message-passing and

shared memory)

No

Failure

agreement attainable;

common knowledge

attainable

agreement attainable;

concurrent common

knowledge

Crash

Failure

agreement attainable

f < n processes

agreement not

attainable

Byzantie

Failure

agreement attainable

f ≤ [(n - 1)/3] Byzantine

processes

agreement not

attainable

In a failure-free system, consensus can be attained in a straightforward manner.

Consensus Problem (all processes have an initial value)

Agreement: All non-faulty processes must agree on the same (single) value.

Validity: If all the non-faulty processes have the same initial value, then the agreed upon

value by all the non-faulty processes must be that same value.

Termination: Each non-faulty process must eventually decide on a value.

Consensus Problem in Asynchronous Systems.

The overhead bounds are for the given algorithms, and not necessarily tight bounds for

the problem.

Solvable

Variants

Failure model

and overhead

Definition

Reliable

broadcast

Crash Failure, n > f

(MP)

Validity,

Agreement,

Integrity conditions

k-set

consensus

Crash Failure, f < k

< n. (MP and SM)

size of the set of

values agreed upon

must be less than k

C-agreement Crash Failure, n ≥

5f + 1 (MP)

values agreed upon

are within ɛ of each

other

Renaming up to f fail-stop

processes, n ≥ 2f +

1 (MP)

Crash Failure, f ≤ n

- 1 (SM)

select a unique name

from a set of names

Circumventing the impossibility results for consensus in asynchronous

systems:

STEPS FOR BYZANTINEGENERALS

(ITERATIVE FORMULATION), SYNCHRONOUS,

MESSAGE-PASSING:

Byzantine Agreement (single source has an initial value)

Agreement: All non faulty processes must agree on the same

value.

Validity: If the source process is non-faulty, then the agreed upon value by all the non- faulty

processes must be the same as the initial value of the source.

STEPS FOR BYZANTINE GENERALS (RECURSIVE

 FORMULATION), SYNCHRONOUS, MESSAGE-PASSING:

CODE FOR THE PHASE KING ALGORITHM:

Each phase has a unique "phase king" derived, say, from PID. Each phase has two rounds:

• 1 in 1st round, each process sends its estimate to all other processes.

• 2 in 2nd round, the "Phase king" process arrives at an estimate based on the values

it received in 1st round, and broadcasts its new estimate to all others.

Fig. Message pattern for the phase-king algorithm.

PHASE KING ALGORITHM CODE:

(f + 1) phases, (f + 1)[(n - 1)(n + 1)] messages, and can tolerate up to f < dn=4e malicious

processes Correctness Argument

• 1 Among f + 1 phases, at least one phase k where phase-king is non-malicious.

• 2 In phase k, all non-malicious processes Pi and Pj will have same estimate of

consensus value as Pk does.

• Pi and Pj use their own majority values. Pi 's mult > n=2 + f)

• Pi uses its majority value; Pj uses phase-king's tie-breaker value. (Pi’s mult > n=2

+ f , Pj 's mult > n=2 for same value)

• Pi and Pj use the phase-king's tie-breaker value. (In the phase in which Pk is non-

malicious, it sends same value to Pi and Pj)

In all 3 cases, argue that Pi and Pj end up with same value as estimate

• If all non-malicious processes have the value x at the start of a phase, they will

continue to have x as the consensus value at the end of the phase.

CODE FOR THE EPSILON CONSENSUS (MESSAGE-PASSING, ASYNCHRONOUS):

Agreement: All non-faulty processes must make a decision and the values decided upon by

any two non-faulty processes must be within range of each other.

Validity: If a non-faulty process Pi decides on some value vi , then that value must be within

the range of values initially proposed by the processes.

Termination: Each non-faulty process must eventually decide on a value. The algorithm for

the message-passing model assumes n ≥ 5f + 1, although the problem is solvable for n > 3f +

1.

• Main loop simulates sync rounds.

• Main lines (1d)-(1f): processes perform all-all msg exchange

• Process broadcasts its estimate of consensus value, and awaits n - f similar

• msgs from other processes

• the processes' estimate of the consensus value converges at a particular rate,

• until it is _ from any other processes estimate.

• # rounds determined by lines (1a)-(1c).

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE, COMPARE &

SWAP:

Wait-free Shared Memory Consensus using Shared Objects:

Not possible to go from bivalent to univalent state if even a single failure is allowed.

Difficulty is not being able to read & write a variable atomically.

• It is not possible to reach consensus in an asynchronous shared memory system

using Read/Write atomic registers, even if a single process can fail by crashing.

There is no wait-free consensus algorithm for reaching consensus in an asynchronous

shared memory system using Read/Write atomic registers.

To overcome these negative results:

• Weakening the consensus problem, e.g., k-set consensus, approximate consensus,

and renaming using atomic registers.

• Using memory that is stronger than atomic Read/Write memory to design wait- free

consensus algorithms. Such a memory would need corresponding access primitives.

Are there objects (with supporting operations), using which there is a wait-free (i.e., (n -1)-

crash resilient) algorithm for reaching consensus in a n-process system? Yes, e.g., Test&Set,

Swap, Compare&Swap. The crash failure model requires the solutions to be wait-free.

TWO-PROCESS WAIT-FREE CONSENSUS USING FIFO QUEUE:

WAIT-FREE CONSENSUS USING COMPARE & SWAP:

NONBLOCKING UNIVERSAL ALGORITHM:

Universality of Consensus Objects

An object is defined to be universal if that object along with read/write registers can

simulate any other object in a wait-free manner. In any system containing up to k processes,

an object X such that CN(X) = k is universal.

For any system with up to k processes, the universality of objects X with consensus number

k is shown by giving a universal algorithm to wait-free simulate any object using objects of

type X and read/write registers.

This is shown in two steps.

• 1 A universal algorithm to wait-free simulate any object whatsoever using

read/write registers and arbitrary k-processor consensus objects is given. This is the

main step.

• 2 Then, the arbitrary k-process consensus objects are simulated with objects of

type X, having consensus number k. This trivially follows after the first step.

Any object X with consensus number k is universal in a system with n ≤ k processes.

A nonblocking operation, in the context of shared memory operations, is an operation that

may not complete itself but is guaranteed to complete at least one of the pending operations

in a finite number of steps.

Nonblocking Universal Algorithm:

The linked list stores the linearized sequence of operations and states following each operation.

Operations to the arbitrary object Z are simulated in a nonblocking way using an

arbitrary consensus object (the field op.next in each record) which is accessed via the

Decide call.

Each process attempts to thread its own operation next into the linked list.

• There are as many universal objects as there are operations to thread.

• A single pointer/counter cannot be used instead of the array Head. Because reading

and updating the pointer cannot be done atomically in a wait-free manner.

• Linearization of the operations given by the sequence number. As algorithm is

non block

4.1 Check pointing and rollback recovery: Introduction

• Rollback recovery protocols restore the system back to a consistent state after a failure,

• It achieves fault tolerance by periodically saving the state of a process during the failure- free

execution

• It treats a distributed system application as a collection of processes that communicate over a

network

Checkpoints

The saved state is called a checkpoint, and the procedure of restarting from a previously check pointed

state is called rollback recovery. A checkpoint can be saved on either the stable storage or the volatile

storage

Why is rollback recovery of distributed systems complicated?

Messages induce inter-process dependencies during failure-free operation

Rollback propagation

The dependencies among messages may force some of the processes that did not fail to roll back. This

phenomenon of cascaded rollback is called the domino effect.

Uncoordinated check pointing

If each process takes its checkpoints independently, then the system cannot avoid the domino effect

– this scheme is called independent or uncoordinated check pointing

Techniques that avoid domino effect

1. Coordinated check pointing rollback recovery - Processes coordinate their checkpoints to form

a system-wide consistent state

2. Communication-induced check pointing rollback recovery - Forces each process to take

checkpoints based on information piggybacked on the application.

3. Log-based rollback recovery - Combines check pointing with logging of non- deterministic

events • relies on piecewise deterministic (PWD) assumption.

Background and definitions

 System model

• A distributed system consists of a fixed number of processes, P1, P2,…_ PN , which

communicate only through messages.

• Processes cooperate to execute a distributed application and interact with the outside world by

receiving and sending input and output messages, respectively.

Rollback-recovery protocols generally make assumptions about the reliability of theinter- process

communication.

• Some protocols assume that the communication uses first-in-first-out (FIFO) order, while other

protocols assume that the communication subsystem can lose, duplicate, or reorder messages.

• Rollback-recovery protocols therefore must maintain information about the internal interactions

among processes and also the external interactions with the outside world.

An example of a distributed system with three processes.

A local checkpoint

• All processes save their local states at certain instants of time

• A local check point is a snapshot of the state of the process at a given instance

• Assumption

– A process stores all local checkpoints on the stable storage

– A process is able to roll back to any of its existing local checkpoints

• 𝐶𝑖,𝑘 – The kth local checkpoint at process 𝑃𝑖

• 𝐶𝑖,0 – A process 𝑃𝑖 takes a checkpoint 𝐶𝑖,0 before it starts execution

Consistent states

• A global state of a distributed system is a collection of the individual states of all

participating processes and the states of the communication channels

• Consistent global state

– a global state that may occur during a failure-free execution of distribution of

distributed computation

– if a process‟s state reflects a message receipt, then the state of the corresponding sender

must reflect the sending of the message

• A global checkpoint is a set of local checkpoints, one from each process

• A consistent global checkpoint is a global checkpoint such that no message is sent by a process

after taking its local point that is received by another process before taking its checkpoint.

• For instance, Figure shows two examples of global states.

• The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

• Note that the consistent state in Figure (a) shows message m1 to have been sent but not yet

received, but that is alright.

• The state in Figure (a) is consistent because it represents a situation in which every message

that has been received, there is a corresponding message send event.

• The state in Figure (b) is inconsistent because process P2 is shown to have received m2 but the

state of process P1 does not reflect having sent it.

• Such a state is impossible in any failure-free, correct computation. Inconsistent states occur

because of failures.

Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver the outcome

of a computation. If a failure occurs, the outside world cannot be expected to roll back. For example, a

printer cannot roll back the effects of printing a character

Outside World Process (OWP)

• It is a special process that interacts with the rest of the system through message passing.

• It is therefore necessary that the outside world see a consistent behavior of the system despite

failures.

• Thus, before sending output to the OWP, the system must ensure that the state from which the

output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it.

An interaction with the outside world to deliver the outcome of a computation is shown on the process-

line by the symbol “||”.

Different types of Messages

1. In-transit message

• messages that have been sent but not yet received

2. Lost messages

• messages whose “send‟ is done but “receive‟ is undone due to rollback

3. Delayed messages

• messages whose “receive‟ is not recorded because the receiving process was either

down or the message arrived after rollback

4. Orphan messages

• messages with “receive‟ recorded but message “send‟ not recorded

• do not arise if processes roll back to a consistent global state

5. Duplicate messages

• arise due to message logging and replaying during process recovery

In-transit messages

In Figure , the global state {C1,8 , C2, 9 , C3,8, C4,8} shows that message m1 has been sent but not yet

received. We call such a message an in-transit message. Message m2 is also an in-transit message.

Delayed messages

Messages whose receive is not recorded because the receiving process was either down or the message

arrived after the rollback of the receiving process, are called delayed messages. For example, messages

m2 and m5 in Figure are delayed messages.

Lost messages

Messages whose send is not undone but receive is undone due to rollback are called lostmessages. This

type of messages occurs when the process rolls back to a checkpoint prior to reception of the message

while the sender does not rollback beyond the send operation of the message. In Figure , message m1 is

a lost message.

Duplicate messages

• Duplicate messages arise due to message logging and replaying during process recovery. For

example, in Figure, message m4 was sent and received before the rollback. However, due to

the rollback of process P4 to C4,8 and process P3 to C3,8, both send and receipt of message

m4 are undone.

• When process P3 restarts from C3,8, it will resend message m4.

• Therefore, P4 should not replay message m4 from its log.

• If P4 replays message m4, then message m4 is called a duplicate message

Issues in failure recovery

In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

The computation comprises of three processes Pi, Pj , and Pk, connected through a communication

network. The processes communicate solely by exchanging messages over fault- free, FIFO

communication channels.

Processes Pi, Pj , and Pk have taken checkpoints

• The rollback of process 𝑃𝑖 to checkpoint 𝐶𝑖,1 created an orphan message H

• Orphan message I is created due to the roll back of process 𝑃𝑗 to checkpoint 𝐶𝑗,1

• Messages C, D, E, and F are potentially problematic

– Message C: a delayed message

– Message D: a lost message since the send event for D is recorded in the

restored state for 𝑃𝑗, but the receive event has been undone at process 𝑃𝑖.

– Lost messages can be handled by having processes keep a message log of all

the sent messages

– Messages E, F: delayed orphan messages. After resuming execution from their

checkpoints, processes will generate both of these messages.

Checkpoint-based recovery

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated checkpointing

2. Coordinated checkpointing

3. Communication-induced checkpointing

1. Uncoordinated Checkpointing

• Each process has autonomy in deciding when to take checkpoints

• Advantages

The lower runtime overhead during normal execution

• Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a

consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a

garbage collection algorithm

4. Not suitable for application with frequent output commits

• The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

• The following direct dependency tracking technique is commonly used in uncoordinated

checkpointing.

Direct dependency tracking technique

 Assume each process 𝑃𝑖 starts its execution with an initial checkpoint 𝐶𝑖,0

 𝐼𝑖,𝑥 : checkpoint interval, interval between 𝐶𝑖,𝑥−1 and 𝐶𝑖,𝑥

 When 𝑃𝑗 receives a message m during 𝐼𝑗,𝑦 , it records the dependency from 𝐼𝑖,𝑥 to 𝐼𝑗,𝑦,

which is later saved onto stable storage when 𝑃𝑗 takes 𝐶𝑗,𝑦

 When a failure occurs, the recovering process initiates rollback by broadcasting a

dependency request message to collect all the dependency information maintained by each

process.

 When a process receives this message, it stops its execution and replies with the

dependency information saved on the stable storage as well as with the dependency

information, if any, which is associated with its current state.

 The initiator then calculates the recovery line based on the global dependency information

and broadcasts a rollback request message containing the recovery line.

 Upon receiving this message, a process whose current state belongs to the recovery line

simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by

the recovery line.

Coordinated Checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activities so that all

local checkpoints form a consistent global state

Types

5. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan

messages, it remains blocked until the entire checkpointing activity is complete

Disadvantages: The computation is blocked during the checkpointing

6. Non-blocking Checkpointing: The processes need not stop their execution while taking

checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process

from receiving application messages that could make the checkpoint inconsistent.

Example (a) : Checkpoint inconsistency

• Message m is sent by 𝑃0 after receiving a checkpoint request from the checkpoint

coordinator

• Assume m reaches 𝑃1 before the checkpoint request

• This situation results in an inconsistent checkpoint since checkpoint 𝐶1,𝑥 shows the receipt

of message m from 𝑃0, while checkpoint 𝐶0,𝑥 does not show m being sent from

𝑃0

Example (b) : A solution with FIFO channels

• If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint

message on each channel by a checkpoint request, forcing each process to take a checkpoint

before receiving the first post-checkpoint message

Impossibility of min-process non-blocking checkpointing

• A min-process, non-blocking checkpointing algorithm is one that forces only a minimum

number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

Algorithm

• The algorithm consists of two phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated since the last checkpoint and sends

them a request.

• Upon receiving the request, each process in turn identifies all processes it has

communicated with since the last checkpoint and sends them a request, and so on, until no

more processes can be identified.

• During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

• In this protocol, after a process takes a checkpoint, it cannot send any message until the

second phase terminates successfully, although receiving a message after the checkpoint

has been taken is allowable.

Communication-induced Checkpointing

Communication-induced checkpointing is another way to avoid the domino effect, while allowing

processes to take some of their checkpoints independently. Processes may be forced to take

additional checkpoints

Two types of checkpoints

1. Autonomous checkpoints

2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that

a process is forced to take are called forced checkpoints.

• Communication-induced check pointing piggybacks protocol- related information on

each application message

• The receiver of each application message uses the piggybacked information to determine

if it has to take a forced checkpoint to advance the global recovery line

• The forced checkpoint must be taken before the application may process the contents of

the message

• In contrast with coordinated check pointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing

2. Index-based checkpointing.

Model-based checkpointing

 Model-based checkpointing prevents patterns of communications and checkpoints

that could result in inconsistent states among the existing checkpoints.

 No control messages are exchanged among the processes during normal operation. All

information necessary to execute the protocol is piggybacked on application messages

 There are several domino-effect-free checkpoint and communication model.

 The MRS (mark, send, and receive) model of Russell avoids the domino effect by

ensuring that within every checkpoint interval all message receiving events precede all

message-sending events.

Index-based checkpointing.

 Index-based communication-induced checkpointing assigns monotonically increasing

indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

4.4 Log-based rollback recovery

A log-based rollback recovery makes use of deterministic and nondeterministic events in a

computation.

Deterministic and non-deterministic events

• Log-based rollback recovery exploits the fact that a process execution can be modeled

as a sequence of deterministic state intervals, each starting with the execution of a non-

deterministic event.

• A non-deterministic event can be the receipt of a message from another process or an

event internal to the process.

• Note that a message send event is not a non-deterministic event.

• For example, in Figure, the execution of process P0 is a sequence of four deterministic

intervals. The first one starts with the creation of the process, while the remaining three

start with the receipt of messages m0, m3, and m7, respectively.

• Send event of message m2 is uniquely determined by the initial state of P0 and by the

receipt of message m0, and is therefore not a non-deterministic event.

• Log-based rollback recovery assumes that all non-deterministic events can be identified

and their corresponding determinants can be logged into the stable storage.

Determinant: the information need to “replay” the occurrence of a non-deterministic event

(e.g., message reception).

• During failure-free operation, each process logs the determinants of all non-

deterministic events that it observes onto the stable storage. Additionally, each process

also takes checkpoints to reduce the extent of rollback during recovery.

The no-orphans consistency condition

Let e be a non-deterministic event that occurs at process p. We define the following:

• Depend(e): the set of processes that are affected by a non-deterministic event e.

• Log(e): the set of processes that have logged a copy of e’s determinant in their volatile

memory.

• Stable(e): a predicate that is true if e’s determinant is logged on the stable storage.

Suppose a set of processes crashes. A process p in becomes an orphan when p itself does

not fail and p’s state depends on the execution of a nondeterministic event e whose determinant

cannot be recovered from the stable storage or from the volatile memory of a surviving process.

storage or from the volatile memory of a surviving process. Formally, it can be stated as follows

Types

1. Pessimistic Logging

• Pessimistic logging protocols assume that a failure can occur after any non-deterministic

event in the computation. However, in reality failures are rare

• Pessimistic protocols implement the following property, often referred to as synchronous

logging, which is a stronger than the always-no-orphans condition

• Synchronous logging

– ∀e: ￢Stable(e) ⇒ |Depend(e)| = 0

• Thai is,if an event has not been logged on the stable storage, then no process can depend

on it.

Example:

• Suppose processes 𝑃1 and 𝑃2 fail as shown, restart from checkpoints B and C, and roll

forward using their determinant logs to deliver again the same sequence of messages as in

the pre-failure execution

• Once the recovery is complete, both processes will be consistent with the state of 𝑃0

that includes the receipt of message 𝑚7 from 𝑃1

• Disadvantage: performance penalty for synchronous logging

• Advantages:

• immediate output commit

• restart from most recent checkpoint

• recovery limited to failed process(es)

• simple garbage collection

• Some pessimistic logging systems reduce the overhead of synchronous logging without

relying on hardware. For example, the sender-based message logging (SBML) protocol

keeps the determinants corresponding to the delivery of each message m in the volatile

memory of its sender.

• The sender-based message logging (SBML) protocol

Two steps.

1. First, before sending m, the sender logs its content in volatile memory.

2. Then, when the receiver of m responds with an acknowledgment that includes the order

in which the message was delivered, the sender adds to the determinant the ordering

information.

Optimistic Logging

• Processes log determinants asynchronously to the stable storage

• Optimistically assume that logging will be complete before a failure occurs

• Do not implement the always-no-orphans condition

• To perform rollbacks correctly, optimistic logging protocols track causal

dependencies during failure free execution

• Optimistic logging protocols require a non-trivial garbage collection scheme

• Pessimistic protocols need only keep the most recent checkpoint of each

process, whereas optimistic protocols may need to keep multiple checkpoints

for each process

• Consider the example shown in Figure Suppose process P2 fails before the

determinant for m5 is logged to the stable storage. Process P1 then becomes an

orphan process and must roll back to undo the effects of receiving the orphan

message m6. The rollback of P1 further forces P0 to roll back to undo the

effects of receiving message m7.

• Advantage: better performance in failure-free execution

• Disadvantages:

• coordination required on output commit

• more complex garbage collection

• Since determinants are logged asynchronously, output commit in optimistic

logging protocols requires a guarantee that no failure scenario can revoke the

output. For example, if process P0 needs to commit output at state X, it must

log messages m4 andm7 to the stable storage and ask P2 to log m2 and m5. In

this case, if any process fails, the computation can be reconstructed up to state

X.

Causal Logging

• Combines the advantages of both pessimistic and optimistic logging at the expense

of a more complex recovery protocol

• Like optimistic logging, it does not require synchronous access to the stable

storage except during output commit

• Like pessimistic logging, it allows each process to commit output independently

and never creates orphans, thus isolating processes from the effects of failures at

other processes

• Make sure that the always-no-orphans property holds

• Each process maintains information about all the events that have causally affected its

state

• Consider the example in Figure Messages m5 and m6 are likely to be lost on

the failures of P1 and P2 at the indicated instants. Process

• P0 at state X will have logged the determinants of the nondeterministic

events that causally precede its state according to Lamport’s happened-before

relation.

• These events consist of the delivery of messages m0, m1, m2, m3, and m4.

• The determinant of each of these non-deterministic events is either logged on

the stable storage or is available in the volatile log of process P0.

• The determinant of each of these events contains the order in which its original

receiver delivered the corresponding message.

• The message sender, as in sender-based message logging, logs the message

content. Thus, process P0 will be able to “guide” the recovery of P1 and P2

since it knows the order in which P1 should replay messages m1 and m3 to reach

the state from which P1 sent message m4.

• Similarly, P0 has the order in which P2 should replay message m2 to be

consistent with both P0 and P1.

• The content of these messages is obtained from the sender log of P0 or

regenerated deterministically during the recovery of P1 and P2.

• Note that information about messages m5 and m6 is lost due to failures. These

messages may be resent after recovery possibly in a different order.

KOO AND TOUEG COORDINATED CHECKPOINTING AND RECOVERY

TECHNIQUE:

• Koo and Toueg coordinated check pointing and recovery technique takes a

consistent set of checkpoints and avoids the domino effect and livelock problems

during the recovery.

• Includes 2 parts: the check pointing algorithm and the recovery algorithm

A. The Checkpointing Algorithm

The checkpoint algorithm makes the following assumptions about the distributed system:

• Processes communicate by exchanging messages through communication channels.

• Communication channels are FIFO.

• Assume that end-to-end protocols (the sliding window protocol) exist to

handle with message loss due to rollback recovery and communication failure.

• Communication failures do not divide the network.

The checkpoint algorithm takes two kinds of checkpoints on the stable storage:

Permanent and Tentative.

A permanent checkpoint is a local checkpoint at a process and is a part of a

consistent global checkpoint.

A tentative checkpoint is a temporary checkpoint that is made a permanent

checkpoint on the successful termination of the checkpoint algorithm.

The algorithm consists of two phases.

First Phase

1. An initiating process Pi takes a tentative checkpoint and requests all other

processes to take tentative checkpoints. Each process informs Pi whether it

succeeded in taking a tentative checkpoint.

2. A process says “no” to a request if it fails to take a tentative checkpoint

3. If Pi learns that all the processes have successfully taken tentative checkpoints,

Pi decides that all tentative checkpoints should be made permanent; otherwise, Pi

decides that all the tentative checkpoints should be thrown-away.

Second Phase

1. Pi informs all the processes of the decision it reached at the end of the first phase.

2. A process, on receiving the message from Pi will act accordingly.

3. Either all or none of the processes advance the checkpoint by taking

permanent checkpoints.

4. The algorithm requires that after a process has taken a tentative checkpoint,

it cannot send messages related to the basic computation until it is informed of

Pi’s decision.

Correctness: for two reasons

i. Either all or none of the processes take permanent checkpoint

ii. No process sends message after taking permanent checkpoint

An Optimization

The above protocol may cause a process to take a checkpoint even when it is not

necessary for consistency. Since taking a checkpoint is an expensive operation, we avoid

taking checkpoints.

B. The Rollback Recovery Algorithm

The rollback recovery algorithm restores the system state to a consistent state after a

failure. The rollback recovery algorithm assumes that a single process invokes the

algorithm. It assumes that the checkpoint and the rollback recovery algorithms are not

invoked concurrently. The rollback recovery algorithm has two phases.

First Phase

1. An initiating process Pi sends a message to all other processes to check if

they all are willing to restart from their previous checkpoints.

2. A process may reply “no” to a restart request due to any reason (e.g., it is

already participating in a check pointing or a recovery process initiated by

some other process).

3. If Pi learns that all processes are willing to restart from their previous

checkpoints, Pi decides that all processes should roll back to their previous

checkpoints. Otherwise,

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time.

Second Phase

1. Pi propagates its decision to all the processes.

2. On receiving Pi’s decision, a process acts accordingly.

3. During the execution of the recovery algorithm, a process cannot send

messages related to the underlying computation while it is waiting for Pi’s

decision.

Correctness: Resume from a consistent state

Optimization: May not to recover all, since some of the processes did not change

anything

The above protocol, in the event of failure of process X, the above protocol

will require processes X, Y, and Z to restart from checkpoints x2, y2, and z2,

respectively.

Process Z need not roll back because there has been no interaction between process

Z and the other two processes since the last checkpoint at Z.

 ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY:

The algorithm of Juang and Venkatesan for recovery in a system that uses

asynchronous check pointing.

A. System Model and Assumptions

The algorithm makes the following assumptions about the underlying system:

• The communication channels are reliable, deliver the messages in FIFO order and

have infinite buffers.

• The message transmission delay is arbitrary, but finite.

• Underlying computation/application is event-driven: process P is at state s, receives

message m, processes the message, moves to state s’ and send messages out. So

the triplet (s, m, msgs_sent) represents the state of P

Two type of log storage are maintained:

– Volatile log: short time to access but lost if processor crash. Move to stable

log periodically.

– Stable log: longer time to access but remained if crashed

A. Asynchronous Check pointing

– After executing an event, the triplet is recorded without any synchronization

with other processes.

– Local checkpoint consist of set of records, first are stored in volatile log,

then moved to stable log.

The Recovery Algorithm Notations and data structure
The following notations and data structure are used by the algorithm:

• RCVDi←j(CkPti) represents the number of messages received by processor pi from

processor pj , from the beginning of the computation till the checkpoint CkPti.

• SENTi→j(CkPti) represents the number of messages sent by processor pi to processor pj ,

from the beginning of the computation till the checkpoint CkPti.

Basic idea

• Since the algorithm is based on asynchronous check pointing, the main issue

in the recovery is to find a consistent set of checkpoints to which the system can be

restored.

The recovery algorithm achieves this by making each processor keep track of both

the number of messages it has sent to other processors as well as the number of

messages it has received from other processors.

• Whenever a processor rolls back, it is necessary for all other processors to find out if

any message has become an orphan message. Orphan messages are discovered by

comparing the number of messages sent to and received from neighboring processors.

For example, if RCVDi←j(CkPti) > SENTj→i(CkPtj) (that is, the number of

messages received by processor pi from processor pj is greater than the number of

messages sent by processor pj to processor pi, according to the current states the

processors), then one or more messages at processor pj are orphan messages.

The Algorithm

When a processor restarts after a failure, it broadcasts a ROLLBACK message that it

had failed

Procedure RollBack_Recovery

processor pi executes the following:

STEP (a)

if processor pi is recovering after a

failure then CkPti := latest event

logged in the stable storage else

CkPti := latest event that took place in pi {The latest event at pi can be either in

stable or in volatile storage.}

end if

STEP (b)

for k = 1 1 to N {N is the number of processors in the

system} do for each neighboring processor pj do

compute SENTi→j(CkPti)

send a ROLLBACK(i, SENTi→j(CkPti)) message to pj

end for

for every ROLLBACK(j, c) message received from a neighbor j do

if RCVDi←j(CkPti) > c {Implies the presence of orphan messages} then

find the latest event e such that RCVDi←j(e) = c {Such an event e may be in the

volatile storage or stable storage.}

CkPti := e

end if

end for

end for{for k}

D. An Example

Consider an example shown in Figure 2 consisting of three processors. Suppose

processor Y fails and restarts. If event ey2 is the latest checkpointed event at Y,

then Y will restart from the state corresponding to ey2.

Figure 2: An example of Juan-Venkatesan algorithm.

• Because of the broadcast nature of ROLLBACK messages, the recovery

algorithm is initiated at processors X and Z.

• Initially, X, Y, and Z set CkPtX ← ex3, CkPtY ← ey2 and CkPtZ ← ez2,

respectively, and X, Y, and Z send the following messages during the first iteration:

• Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

• X sends ROLLBACK(X,2) to Y and ROLLBACK(X,0) to Z;

• Z sends ROLLBACK(Z,0) to X and ROLLBACK(Z,1) to Y.

Since RCVDX←Y (CkPtX) = 3 > 2 (2 is the value received in the ROLLBACK(Y,2)

message from Y), X will set CkPtX to ex2 satisfying RCVDX←Y (ex2) = 1≤ 2.

Since RCVDZ←Y (CkPtZ) = 2 > 1, Z will set CkPtZ to ez1 satisfying RCVDZ←Y

(ez1) = 1 ≤ 1.

At Y, RCVDY←X(CkPtY) = 1 < 2 and RCVDY←Z(CkPtY) = 1 = SENTZ←Y

(CkPtZ).

Y need not roll back further.

In the second iteration, Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

Z sends ROLLBACK(Z,1) to Y and

ROLLBACK(Z,0) to X;

 X sends ROLLBACK(X,0) to Z and

ROLLBACK(X, 1) to Y.

If Y rolls back beyond ey3 and loses the message from X that caused ey3, X can

resend this message to Y because ex2 is logged at X and this message available in

the log. The second and third iteration will progress in the same manner. The set of

recovery points chosen at the end of the first iteration, {ex2, ey2, ez1}, is consistent,

and no further rollback occurs.

