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UNIT I 

 
PROBLEM SOLVING 

Introduction to AI - AI Applications - Problem solving agents – search algorithms – uninformed search 

strategies – Heuristic search strategies – Local search and optimization problems – adversarial search 

constraint satisfaction problems (CSP) 

 
1. INTRODUCTION 

 

INTELLIGENCE ARTIFICIAL INTELLIGENCE 

It is a natural process. It is programmed by humans. 

It is actually hereditary. It is not hereditary. 

Knowledge is required for intelligence. KB and electricity are required to generate 

output. 

No human is an expert. We may get better 

solutions from other humans. 

Expert systems are made which aggregate 

many person’s experience and ideas. 

 

1.1 DEFINITION 
 

The study of how to make computers do things at which at the moment, people are better. 

“Artificial Intelligence is the ability of a computer to act like a human being”. 
 

• Systems that think like humans 

• Systems that act like humans 

• Systems that think rationally. Systems that act rationally. 
 

 
 

 
 

 

 

 

Figure 1.1 Some definitions of artificial intelligence, organized into four categories 
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(a) Intelligence - Ability to apply knowledge in order to perform better in an environment. 

(b) Artificial Intelligence - Study and construction of agent programs that perform well 

in a given environment, for a given agent architecture. 

(c) Agent - An entity that takes action in response to precepts from an environment. 

(d) Rationality - property of a system which does the “right thing” given what it knows. 

(e) Logical Reasoning - A process of deriving new sentences from old, such that the new 

sentences are necessarily true if the old ones are true. 

Four Approaches of Artificial Intelligence: 

➢ Acting humanly: The Turing test approach. 

➢ Thinking humanly: The cognitive modelling approach. 

➢ Thinking rationally: The laws of thought approach. 

➢ Acting rationally: The rational agent approach. 
 

1.2 ACTING HUMANLY: THE TURING TEST APPROACH 
 

The Turing Test, proposed by Alan Turing (1950), was designed to provide a 

satisfactory operational definition of intelligence. A computer passes the test if a human 

interrogator, after posing some written questions, cannot tell whether the written responses 

come from a person or from a computer. 
 

 

• natural language processing to enable it to communicate successfully in English; 

• knowledge representation to store what it knows or hears; 

• automated reasoning to use the stored information to answer questions and to draw 

new conclusions 

• machine learning to adapt to new circumstances and to detect and extrapolate patterns. 

 

 

Figure 1.2 Turing Test 
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Total Turing Test includes a video signal so that the interrogator can test the subject’s 

perceptual abilities, as well as the opportunity for the interrogator to pass physical objects 

“through the hatch.” To pass the total Turing Test, the computer will need 

• computer vision to perceive objects, and robotics to manipulate objects and move 

about. 

Thinking humanly: The cognitive modelling approach 
 

Analyse how a given program thinks like a human, we must have some way of 

determining how humans think. The interdisciplinary field of cognitive science brings together 

computer models from AI and experimental techniques from psychology to try to construct 

precise and testable theories of the workings of the human mind. 

Although cognitive science is a fascinating field in itself, we are not going to be 

discussing it all that much in this book. We will occasionally comment on similarities or 

differences between AI techniques and human cognition. Real cognitive science, however, is 

necessarily based on experimental investigation of actual humans or animals, and we assume 

that the reader only has access to a computer for experimentation. We will simply note that 

AI and cognitive science continue to fertilize each other, especially in the areas of vision, 

natural language, and learning. 

Thinking rationally: The “laws of thought” approach 
 

The Greek philosopher Aristotle was one of the first to attempt to codify ``right 

thinking,'' that is, irrefutable reasoning processes. His famous syllogisms provided patterns 

for argument structures that always gave correct conclusions given correct premises. 

For example, ``Socrates is a man; all men are mortal; therefore Socrates is mortal.'' 
 

These laws of thought were supposed to govern the operation of the mind, and 

initiated the field of logic. 

Acting rationally: The rational agent approach 
 

Acting rationally means acting so as to achieve one's goals, given one's beliefs. An 

agent is just something that perceives and acts. 

The right thing: that which is expected to maximize goal achievement, given the 

available information 

Does not necessary involve thinking. 
 

For Example - blinking reflex- but should be in the service of rational action. 
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1.3 FUTURE OF ARTIFICIAL INTELLIGENCE 

• Transportation: Although it could take a decade or more to perfect them, autonomous 

cars will one day ferry us from place to place. 

• Manufacturing: AI powered robots work alongside humans to perform a limited range 

of tasks like assembly and stacking, and predictive analysis sensors keep equipment 

running smoothly. 

• Healthcare: In the comparatively AI-nascent field of healthcare, diseases are more 

quickly and accurately diagnosed, drug discovery is sped up and streamlined, virtual 

nursing assistants monitor patients and big data analysis helps to create a more 

personalized patient experience. 

• Education: Textbooks are digitized with the help of AI, early-stage virtual tutors assist 

human instructors and facial analysis gauges the emotions of students to help determine 

who’s struggling or bored and better tailor the experience to their individual needs. 

• Media: Journalism is harnessing AI, too, and will continue to benefit from it. 

Bloomberg uses Cyborg technology to help make quick sense of complex financial 

reports. The Associated Press employs the natural language abilities of Automated 

Insights to produce 3,700 earning reports stories per year — nearly four times more 

than in the recent past 

• Customer Service: Last but hardly least, Google is working on an AI assistant that can 

place human-like calls to make appointments at, say, your neighborhood hair salon. In 

addition to words, the system understands context and nuance. 

1.4 CHARACTERISTICS OF INTELLIGENT AGENTS 

Situatedness 

The agent receives some form of sensory input from its environment, and it performs 

some action that changes its environment in some way. 

Examples of environments: the physical world and the Internet. 
 

• Autonomy 

 

The agent can act without direct intervention by humans or other agents and that it has 

control over its own actions and internal state. 

• Adaptivity 

 

The agent is capable of 

(1) reacting flexibly to changes in its environment; 

(2) taking goal-directed initiative (i.e., is pro-active), when appropriate; and 

(3) Learning from its own experience, its environment, and interactions with others. 

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
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• Sociability 

 

The agent is capable of interacting in a peer-to-peer manner with other agents or humans 
 

1.5 AGENTS AND ITS TYPES 
 

 

An agent is anything that can be viewed as perceiving its environment through sensors 

and acting upon that environment through actuators. 

• Human Sensors: 

• Eyes, ears, and other organs for sensors. 

• Human Actuators: 

• Hands, legs, mouth, and other body parts. 

• Robotic Sensors: 

• Mic, cameras and infrared range finders for sensors 

• Robotic Actuators: 

• Motors, Display, speakers etc An agent can be: 
 

Human-Agent: A human agent has eyes, ears, and other organs which work for sensors 

and hand, legs, vocal tract work for actuators. 

Robotic Agent: A robotic agent can have cameras, infrared range finder, NLP for 

sensors and various motors for actuators. 

Software Agent: Software agent can have keystrokes, file contents as sensory input 

and act on those inputs and display output on the screen. 

Hence the world around us is full of agents such as thermostat, cell phone, camera, 

and even we are also agents. Before moving forward, we should first know about sensors, 

effectors, and actuators. 

Sensor: Sensor is a device which detects the change in the environment and sends the 

information to other electronic devices. An agent observes its environment through sensors. 

Figure 1.3 Agent types 
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Actuators: Actuators are the component of machines that converts energy into motion. 

The actuators are only responsible for moving and controlling a system. An actuator can be an 

electric motor, gears, rails, etc. 

Effectors: Effectors are the devices which affect the environment. Effectors can be 

legs, wheels, arms, fingers, wings, fins, and display screen. 
 

 

 

1.6 PROPERTIES OF ENVIRONMENT 
 

An environment is everything in the world which surrounds the agent, but it is not a 

part of an agent itself. An environment can be described as a situation in which an agent is 

present. 

The environment is where agent lives, operate and provide the agent with something 

to sense and act upon it. 

Fully observable vs Partially Observable: 
 

If an agent sensor can sense or access the complete state of an environment at each 

point of time then it is a fully observable environment, else it is partially observable. 

A fully observable environment is easy as there is no need to maintain the internal state 

to keep track history of the world. 

An agent with no sensors in all environments then such an environment is called as 

unobservable. 

Example: chess – the board is fully observable, as are opponent’s moves. Driving 

– what is around the next bend is not observable and hence partially observable. 
 

1. Deterministic vs Stochastic 
 

• If an agent's current state and selected action can completely determine the next state 

of the environment, then such environment is called a deterministic environment. 

Figure 1.4 Effectors 
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• A stochastic environment is random in nature and cannot be determined completely 

by an agent. 

• In a deterministic, fully observable environment, agent does not need to worry about 

uncertainty. 

2. Episodic vs Sequential 
 

• In an episodic environment, there is a series of one-shot actions, and only the current 

percept is required for the action. 

• However, in Sequential environment, an agent requires memory of past actions to 

determine the next best actions. 

3. Single-agent vs Multi-agent 
 

• If only one agent is involved in an environment, and operating by itself then such an 

environment is called single agent environment. 

• However, if multiple agents are operating in an environment, then such an environment 

is called a multi-agent environment. 

• The agent design problems in the multi-agent environment are different from single 

agent environment. 

4. Static vs Dynamic 
 

• If the environment can change itself while an agent is deliberating then such 

environment is called a dynamic environment else it is called a static environment. 

• Static environments are easy to deal because an agent does not need to continue looking 

at the world while deciding for an action. 

• However for dynamic environment, agents need to keep looking at the world at each 

action. 

• Taxi driving is an example of a dynamic environment whereas Crossword puzzles are 

an example of a static environment. 

5. Discrete vs Continuous 
 

• If in an environment there are a finite number of precepts and actions that can be 

performed within it, then such an environment is called a discrete environment else it 

is called continuous environment. 

• A chess game comes under discrete environment as there is a finite number of moves 

that can be performed. 

• A self-driving car is an example of a continuous environment. 
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6. Known vs Unknown 
 

• Known and unknown are not actually a feature of an environment, but it is an agent's 

state of knowledge to perform an action. 

• In a known environment, the results for all actions are known to the agent. While in 

unknown environment, agent needs to learn how it works in order to perform an action. 

• It is quite possible that a known environment to be partially observable and an Unknown 

environment to be fully observable. 

7. Accessible vs. Inaccessible 
 

• If an agent can obtain complete and accurate information about the state's environment, 

then such an environment is called an Accessible environment else it is called 

inaccessible. 

• An empty room whose state can be defined by its temperature is an example of an 

accessible environment. 

• Information about an event on earth is an example of Inaccessible environment. 
 

Task environments, which are essentially the "problems" to which rational agents are 

the "solutions." 

PEAS: Performance Measure, Environment, Actuators, Sensors 
 

Performance 
 

The output which we get from the agent. All the necessary results that an agent gives 

after processing comes under its performance. 

Environment 
 

All the surrounding things and conditions of an agent fall in this section. It basically 

consists of all the things under which the agents work. 

Actuators 
 

The devices, hardware or software through which the agent performs any actions or 

processes any information to produce a result are the actuators of the agent. 

 

 
Sensors 

 

The devices through which the agent observes and perceives its environment are the 

sensors of the agent. 
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Rational Agent - A system is rational if it does the “right thing”. Given what it knows. 
 

Characteristic of Rational Agent 
 

▪ The agent's prior knowledge of the environment. 

▪ The performance measure that defines the criterion of success. 

▪ The actions that the agent can perform. 

▪ The agent's percept sequence to date. 
 

For every possible percept sequence, a rational agent should select an action that is 

expected to maximize its performance measure, given the evidence provided by the percept 

sequence and whatever built-in knowledge the agent has. 

• An omniscient agent knows the actual outcome of its actions and can act 

accordingly; but omniscience is impossible in reality. 

• Ideal Rational Agent precepts and does things. It has a greater performance measure. 

Eg. Crossing road. Here first perception occurs on both sides and then only action. No 

perception occurs in Degenerate Agent. 

Eg. Clock. It does not view the surroundings. No matter what happens outside. The 

clock works based on inbuilt program. 

• Ideal Agent describes by ideal mappings. “Specifying which action an agent ought to 

take in response to any given percept sequence provides a design for ideal agent”. 

Figure 1.5 Examples of agent types and their PEAS descriptions 
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• Eg. SQRT function calculation in calculator. 

• Doing actions in order to modify future precepts-sometimes called information 

gathering- is an important part of rationality. 

• A rational agent should be autonomous-it should learn from its own prior knowledge 

(experience). 

The Structure of Intelligent Agents 
 

Agent = Architecture + Agent Program 

Architecture = the machinery that an agent executes on. (Hardware) 

Agent Program = an implementation of an agent function. (Algorithm, 

Logic – Software) 

1.7 PROBLEM SOLVING APPROACH TO TYPICAL AI PROBLEMS 

Problem-solving agents 

In Artificial Intelligence, Search techniques are universal problem-solving methods. 

Rational agents or Problem-solving agents in AI mostly used these search strategies or 

algorithms to solve a specific problem and provide the best result. Problem- solving agents 

are the goal-based agents and use atomic representation. In this topic, wewill learn various 

problem-solving search algorithms. 

• Some of the most popularly used problem solving with the help of artificial 

intelligence are: 

1. Chess. 

2. Travelling Salesman Problem. 

3. Tower of Hanoi Problem. 

4. Water-Jug Problem. 

5. N-Queen Problem. 
 

Problem Searching 
 

• In general, searching refers to as finding information one needs. 

• Searching is the most commonly used technique of problem solving in artificial 

intelligence. 

• The searching algorithm helps us to search for solution of particular problem. 
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Problem: Problems are the issues which comes across any system. A solution is needed to 

solve that particular problem. 

Steps : Solve Problem Using Artificial Intelligence 
 

• The process of solving a problem consists of five steps. These are: 
 

 

 

Defining The Problem: The definition of the problem must be included precisely. It 

should contain the possible initial as well as final situations which should result in acceptable 

solution. 

1. Analyzing The Problem: Analyzing the problem and its requirement must be done as 

few features can have immense impact on the resulting solution. 

2. Identification Of Solutions: This phase generates reasonable amount of solutions to 

the given problem in a particular range. 

3. Choosing a Solution: From all the identified solutions, the best solution is chosen 

basis on the results produced by respective solutions. 

4. Implementation: After choosing the best solution, its implementation is done. 
 

 

 

 

 

 

 

 

Figure 1.11 Problem Solving in Artificial Intelligence 
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Measuring problem-solving performance 
 

We can evaluate an algorithm’s performance in four ways: 

Completeness: Is the algorithm guaranteed to find a solution when there is one? 

Optimality: Does the strategy find the optimal solution? 

Time complexity: How long does it take to find a solution? 

Space complexity: How much memory is needed to perform the search? 
 

Search Algorithm Terminologies 
 

• Search: Searching is a step by step procedure to solve a search-problem in a given 

search space. A search problem can have three main factors: 

1. Search Space: Search space represents a set of possible solutions, which a system 

may have. 

2. Start State: It is a state from where agent begins the search. 
 

3. Goal test: It is a function which observe the current state and returns whether the 

goal state is achieved or not. 

• Search tree: A tree representation of search problem is called Search tree. The root of 

the search tree is the root node which is corresponding to the initial state. 

• Actions: It gives the description of all the available actions to the agent. 

• Transition model: A description of what each action do, can be represented as a 

transition model. 

• Path Cost: It is a function which assigns a numeric cost to each path. 

• Solution: It is an action sequence which leads from the start node to the goal node. 

Optimal Solution: If a solution has the lowest cost among all solutions. 

Example Problems 
 

A Toy Problem is intended to illustrate or exercise various problem-solving methods. 

Areal- world problem is one whose solutions people actually care about. 
 

Toy Problems 
 

Vacuum World 
 

States: The state is determined by both the agent location and the dirt locations. The 

agent is in one of the 2 locations, each of which might or might not contain dirt. Thus there are 

2*2^2=8 possible world states. 

Initial state: Any state can be designated as the initial state. 
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Actions: In this simple environment, each state has just three actions: Left, Right, and 

Suck. Larger environments might also include Up and Down. 
 

Transition model: The actions have their expected effects, except that moving Left in 

the leftmost squ are, moving Right in the rightmost square, and Sucking in a clean square have 

no effect. The complete state space is shown in Figure. 

Goal test: This checks whether all the squares are clean. 
 

Path cost: Each step costs 1, so the path cost is the number of steps in the path. 
 

 

 

1) 8- Puzzle Problem 
 

 
 

States: A state description specifies the location of each of the eight tiles and the 

blank in one of the nine squares. 

Figure 1.12 Vacuum World State Space Graph 

Figure 1.13 8- Puzzle Problem 
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Initial state: Any state can be designated as the initial state. Note that any given goal 

can be reached from exactly half of the possible initial states. 

The simplest formulation defines the actions as movements of the blank space Left, 

Right, Up, or Down. Different subsets of these are possible depending on where the blank is. 

Transition model: Given a state and action, this returns the resulting state; for example, 

if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank 

switched. 

Goal test: This checks whether the state matches the goal configuration shown in 

Figure. Path cost: Each step costs 1, so the path cost is the number of steps in the path. 

Queens Problem 
 

 
 

• States: Any arrangement of 0 to 8 queens on the board is a state. 

• Initial state: No queens on the board. 

• Actions: Add a queen to any empty square. 

• Transition model: Returns the board with a queen added to the specified square. 

• Goal test: 8 queens are on the board, none attacked. 
 

Consider the given problem. Describe the operator involved in it. Consider the water 

jug problem: You are given two jugs, a 4-gallon one and 3-gallon one. Neither has any 

measuring marker on it. There is a pump that can be used to fill the jugs with water. How can 

you get exactly 2 gallon of water from the 4-gallon jug ? 

Explicit Assumptions: A jug can be filled from the pump, water can be poured out of a 

jug on to the ground, water can be poured from one jug to another and that there are no other 

measuring devices available. 

Here the initial state is (0, 0). The goal state is (2, n) for any value of n. 

Figure 1.14 Queens Problem 
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State Space Representation: we will represent a state of the problem as a tuple (x, y) 

where x represents the amount of water in the 4-gallon jug and y represents the amount of water 

in the 3-gallon jug. Note that 0 ≤ x ≤ 4, and 0 ≤ y ≤ 3. 

To solve this we have to make some assumptions not mentioned in the problem. They 

are:  
 

• We can fill a jug from the pump. 

• We can pour water out of a jug to the ground. 

• We can pour water from one jug to another. 

• There is no measuring device available. 
 

Operators - we must define a set of operators that will take us from one state to another. 
 

Table 1.1 
 

Sr. Current State Next State Descriptions 

1 (x,y) if x < 4 (4,y) Fill the 4 gallon jug 

2 (x,y) if x < 3 (x,3) Fill the 3 gallon jug 

3 (x,y) if x > 0 (x – d, y) Pour some water out of the 4 gallon jug 

4 (x,y) if y > 0 (x, y – d) Pour some water out of the 3 gallon jug 

5 (x,y) if y > 0 (0, y) Empty the 4 gallon jug 

6 (x,y) if y > 0 (x 0) Empty the 3 gallon jug on the ground 

7 
(x,y) if x + y > = 4 

and y > 0 
(4, y – (4 – x)) 

Pour water from the 3 gallon jug into 

the 4 gallon jug until the 4 gallon jug is 

full 

8 
(x,y) if x + y > = 3 

and x > 0 
(x – (3 – x), 3) 

Pour water from the 4 gallon jug into 

the 3 gallon jug until the 3 gallon jug is 

full 

9 
(x,y) if x + y < = 4 

and y > 0 
(x + y, 0) 

Pour all the water from the 3 gallon jug 

into the 4 gallon jug 

10 
(x,y) if x + y < = 3 

and x > 0 
(0, x + y) 

Pour all the water from the 4 gallon jug 

into the 3 gallon jug 

11 (0, 2) (2, 0) 
Pour the 2 gallons from 3 gallon jug into 

the 4 gallon jug 

12 (2, y) (0, y) 
Empty the 2 gallons in the 4 gallon jug 

on the ground 
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Table 1.2 

Solution 

S.No. 
Gallons in 4-gel 

jug(x) 

Gallons in 3-gel 

jug (y) 
Rule Applied 

1. 0 0 Initial state 

2.. 4 0 1. Fill 4 

3 1 3 6. Poor 4 into 3 to fill 

4. 1 0 4. Empty 3 

5. 0 1 8. Poor all of 4 into 3 

6. 4 1 1. Fill 4 

7. 2 3 6. Poor 4 into 3 

 
 

➢ 4-gallon one and a 3-gallon Jug 

 

➢ No measuring mark on the jug. 

➢ There is a pump to fill the jugs with water. 

➢ How can you get exactly 2 gallon of water into the 4-gallon jug? 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 Solution 
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2.1 PROBLEM SOLVING BY SEARCH 

An important aspect of intelligence is goal-based problem solving. 
 

The solution of many problems can be described by finding a sequence of actions that 

lead to a desirable goal. Each action changes the state and the aim is to find the sequence of 

actions and states that lead from the initial (start) state to a final (goal) state. 

A well-defined problem can be described by: 

Initial state 

• Operator or successor function - for any state x returns s(x), the set of states 

reachable from x with one action 

• State space - all states reachable from initial by any sequence of actions 

• Path - sequence through state space 

• Path cost - function that assigns a cost to a path. Cost of a path is the sum of costs 

of individual actions along the path 

• Goal test - test to determine if at goal state 
 

What is Search? 
 

Search is the systematic examination of states to find path from the start/root state 

to the goal state. 
 

The set of possible states, together with operators defining their connectivity constitute 

the search space. 

The output of a search algorithm is a solution, that is, a path from the initial state to a 

state that satisfies the goal test. 

Problem-solving agents 
 

A Problem solving agent is a goal-based agent. It decide what to do by finding sequence 

of actions that lead to desirable states. The agent can adopt a goal and aim at satisfying it. 

To illustrate the agent’s behavior, let us take an example where our agent is in the city 

of Arad, which is in Romania. The agent has to adopt a goal of getting to Bucharest. 

 

Goal formulation, based on the current situation and the agent’s performance measure, 

is the first step in problem solving. 

The agent’s task is to find out which sequence of actions will get to a goal state. 
 

Problem formulation is the process of deciding what actions and states to consider 

given a goal. 
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Example: Route finding problem 

Referring to figure 

On holiday in Romania : currently in Arad. Flight leaves tomorrow from Bucharest 

Formulate goal: be in Bucharest 

Formulate problem: states: various cities 

actions: drive between cities 

Find solution: 

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest 

Problem formulation 

A problem is defined by four items: 

initial state e.g., “at Arad" 

successor function S(x) = set of action-state pairs e.g., S(Arad) = {[Arad - 

>Zerind;Zerind],….} goal test, can be 

explicit, e.g., x = at Bucharest" implicit, e.g., NoDirt(x) 

path cost (additive) 

e.g., sum of distances, number of actions executed, etc. c(x; a; y) is the step cost, 

assumed to be >= 0 

A solution is a sequence of actions leading from the initial state to a goal state. 

Goal formulation and problem formulation 
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2.2 EXAMPLE PROBLEMS 
 

The problem solving approach has been applied to a vast array of task environments. 

Some best known problems are summarized below. They are distinguished as toy or real- world 

problems 

A toy problem is intended to illustrate various problem solving methods. It can be 

easily used by different researchers to compare the performance of algorithms. 

A real world problem is one whose solutions people actually care about. 

 

 

Different Search Algorithm 
 

 

 

Figure 2.4 Different Search Algorithms 
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2.3 UNINFORMED SEARCH STRATGES 
 

Uninformed Search Strategies have no additional information about states beyond 

that provided in the problem definition. 
 

Strategies that know whether one non goal state is “more promising” than another are 

called 
 

Informed search or heuristic search strategies. 
 

There are five uninformed search strategies as given below. 
 

o Breadth-first search 

o Uniform-cost search 

o Depth-first search 

o Depth-limited search 

o Iterative deepening search 

Breadth-first search 
 

o Breadth-first search is a simple strategy in which the root node is expanded first, then 

all successors of the root node are expanded next, then their successors, and so on. In 

general, all the nodes are expanded at a given depth in the search tree before any 

nodes at the next level are expanded. 

o Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe 

that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first 

will be expanded first. In otherwards, calling TREE-SEARCH (problem, FIFO- 

QUEUE()) results in breadth-first-search. The FIFO queue puts all newly generated 

successors at the end of the queue, which means that Shallow nodes are expanded 

before deeper nodes. 

 
 

 

 

 

 

 

 

 

Figure 2.5 Breadth-first search on a simple binary tree. At each stage, the node to be 

expanded next is indicated by a marker. 
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Properties of breadth-first-search 
 

 

Time complexity for BFS 
 

Assume every state has b successors. The root of the search tree generates b nodes at 

the first level, each of which generates b more nodes, for a total of b2 at the second level. Each 

of these generates b more nodes, yielding b3 nodes at the third level, and so on. Now suppose, 

that the solution is at depth d. In the worst case, we would expand all but the last node at level 

d, generating bd+1 - b nodes at level d+1. 

Then the total number of nodes generated is b + b2 + b3 + …+ bd + ( bd+1 + b) = O(bd+1). 
 

Every node that is generated must remain in memory, because it is either part of the 

fringe or is an ancestor of a fringe node. The space compleity is, therefore, the same as the time 

complexity 

2.4 UNIFORM-COST SEARCH 
 

Instead of expanding the shallowest node, uniform-cost search expands the node n 

with the lowest path cost. Uniform-cost search does not care about the number of steps a path 

has, but only about their total cost. 
 

Figure 2.6 Breadth-first-search properties 
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2.5 DEPTH-FIRST-SEARCH 
 

Depth-first-search always expands the deepest node in the current fringe of the search 

tree. The progress of the search is illustrated in Figure 1.31. The search proceeds immediately 

to the deepest level of the search tree, where the nodes have no successors. As those nodes are 

expanded, they are dropped from the fringe, so then the search “backs up” to the next shallowest 

node that still has unexplored successors. 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure 2.7 Depth-first-search on a binary tree. Nodes that have been expanded and have 

node scendants in the fringe can be removed from the memory; these are shown in 

black. Nodes at depth 3 are assumed to have no successors and M is the only goal node. 

 

This strategy can be implemented by TREE-SEARCH with a last-in-first-out (LIFO) 

queue, also known as a stack. 

Depth-first-search has very modest memory requirements. It needs to store only a single 

path from the root to a leaf node, along with the remaining unexpanded sibling nodes for each 

node on the path. Once the node has been expanded, it can be removed from the memory, as 

soon as its descendants have been fully explored (Refer Figure 2.7). 

For a state space with a branching factor b and maximum depth m, depth-first-search 

requires storage of only bm + 1 nodes. 

Using the same assumptions as Figure, and assuming that nodes at the same depth as 

the goal node have no successors, we find the depth-first-search would require 118 kilobytes 

instead of 10 petabytes, a factor of 10 billion times less space. 
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Drawback of Depth-first-search 

The drawback of depth-first-search is that it can make a wrong choice and get stuck 

going down very long(or even infinite) path when a different choice would lead to solution 

near the root of the search tree. For example, depth-first-search will explore the entire left 

subtree even if node C is a goal node. 

2.12 BACKTRACKING SEARCH 

A variant of depth-first search called backtracking search uses less memory and only 

one successor is generated at a time rather than all successors.; Only O(m) memory is needed 

rather than O(bm) 

DEPTH-LIMITED-SEARCH 
 

 
 

 

 

The problem of unbounded trees can be alleviated by supplying depth-first-search with 

a pre- determined depth limit l. That is, nodes at depth l are treated as if they have no successors. 

This approach is called depth-limited-search. The depth limit soves the infinite path problem. 

Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(bl) 

and its space complete is O(bl). Depth-first-search can be viewed as a special case of depth- 

limited search with l = oo Sometimes, depth limits can be based on knowledge of the problem. 

For, example, on the map of Romania there are 20 cities. Therefore, we know that if there is a 

solution, it must be of length 19 at the longest, So l = 10 is a possible choice. However, it can 

be shown that any city can be reached from any other city in at most 9 steps. This number 

known as the diameter of the state space, gives us a better depth limit. 

Figure 2.8 Depth-limited-search 



 

lOMoAR cPSD|24943912 

 

 

Depth-limited-search can be implemented as a simple modification to the general 

tree- search algorithm or to the recursive depth-first-search algorithm. The pseudocode for 

recursive depth- limited-search is shown in Figure. 

It can be noted that the above algorithm can terminate with two kinds of failure : the 

standard failure value indicates no solution; the cutoffvalue indicates no solution within the 

depth limit. Depth-limited search = depth-first search with depth limit l,returns cut off if any 

path is cut off by depth limit 
 

 
 

2.13 ITERATIVE DEEPENING DEPTH-FIRST SEARCH 
 

Iterative deepening search (or iterative-deepening-depth-first-search) is a general 

strategy often used in combination with depth-first-search, that finds the better depth limit. It 

does this by gradually increasing the limit – first 0,then 1,then 2, and so on – until a goal is 

found. This will occur when the depth limit reaches d, the depth of the shallowest goal node. 

The algorithm is shown in Figure. 

Iterative deepening combines the benefits of depth-first and breadth-first-search Like 

depth-first-search, its memory requirements are modest; O(bd) to be precise. 

Like Breadth-first-search, it is complete when the branching factor is finite and optimal 

when the path cost is a non decreasing function of the depth of the node. 

Figure shows the four iterations of ITERATIVE-DEEPENING_SEARCH on a binary 

search tree, where the solution is found on the fourth iteration. 

Figure 2.9 Recursive implementation of Depth-limited-search 

function Depth-Limited-Search( problem, limit) returns a solution/fail/cutoff return 

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) function Recursive- 

DLS(node, problem, limit) returns solution/fail/cutoff cutoff-occurred? false 

if Goal-Test(problem,State[node]) then return Solution(node) 

else if Depth[node] = limit then return cutoff 

else for each successor in Expand(node, problem) do result 

Recursive-DLS(successor, problem, limit) if result = cutoff then cutoff_occurred?true 

else if result not = failure then return result 

ifcutoff_occurred? then return cutoff else return failure 
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Iterative search is not as wasteful as it might seem 

Figure 2.10 The iterative deepening search algorithm, which repeatedly applies 

depth-limited- search with increasing limits. It terminates when a solution is found or 

if the depth limited search returns failure, meaning that no solution exists. 

Figure 2.11 Four iterations of iterative deepening search on a binary tree 
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Properties of iterative deepening search 

 

Figure 2.12 Iterative search is not as wasteful as it might seem 

Figure 2.13 Properties of iterative deepening search 
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Bidirectional Search 
 

The idea behind bidirectional search is to run two simultaneous searches – one forward 

from the initial state and the other backward from the goal, stopping when the two searches 

meet in the middle 

The motivation is that bd/2 + bd/2 much less than, or in the figure, the area of the two 

small circles is less than the area of one big circle centered on the start and reaching to the goal. 
 

 

 

• Before moving into bidirectional search let’s first understand a few terms. 
 

• Forward Search: Looking in-front of the end from start. 
 

• Backward Search: Looking from end to the start back-wards. 
 

• So Bidirectional Search as the name suggests is a combination of forwarding and 

backward search. Basically, if the average branching factor going out of node / fan- out, 

if fan-out is less, prefer forward search. Else if the average branching factor is going 

into a node/fan in is less (i.e. fan-out is more), prefer backward search. 

• We must traverse the tree from the start node and the goal node and wherever they meet 

the path from the start node to the goal through the intersection is the optimal solution. 

The BS Algorithm is applicable when generating predecessors is easy in both forward 

and backward directions and there exist only 1 or fewer goal states. 

Figure 2.14 A schematic view of a bidirectional search that is about to succeed, when 

a Branch from the Start node meets a Branch from the goal node. 
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2.14 SEARCHING WITH PARTIAL INFORMATION 
 

o Different types of incompleteness lead to three distinct problem types: 

o Sensorless problems (conformant): If the agent has no sensors at all 

o Contingency problem: if the environment if partially observable or if action are 

uncertain (adversarial) 

o Exploration problems: When the states and actions of the environment are unknown. 

Figure 2.15 Comparing Uninformed Search Strategies 

Figure 2.16 Evaluation of search strategies, b is the branching factor; d is the depth of 

the shallowest solution; m is the maximum depth of the search tree; l is the depth 

limit. Superscript caveats are as follows: a complete if b is finite; b complete if step 

costs >= E for positive E; c optimal if step costs are all identical; d if both directions 

use breadth-first search. 
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o No sensor 

o Initial State(1,2,3,4,5,6,7,8) 

o After action [Right] the state (2,4,6,8) 

o After action [Suck] the state (4, 8) 

o After action [Left] the state (3,7) 

o After action [Suck] the state (8) 

o Answer : [Right, Suck, Left, Suck] coerce the world into state 7 without any sensor 

o Belief State: Such state that agent belief to be there 

Partial knowledge of states and actions: 

– sensorless or conformant problem 

– Agent may have no idea where it is; solution (if any) is a sequence. 

– contingency problem 

– Percepts provide new information about current state; solution is a tree or policy; 

often interleave search and execution. 

– If uncertainty is caused by actions of another agent: adversarial problem 

– exploration problem 

– When states and actions of the environment are unknown. 
 

Figure 2.17 states and actions of the 

environment are unknown 
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Contingency, start in {1,3}. 

Murphy’s law, Suck can dirty a clean carpet. Local sensing: dirt, location only. 

– Percept = [L,Dirty] ={1,3} 

– [Suck] = {5,7} 

– [Right] ={6,8} 

– [Suck] in {6}={8} (Success) 

– BUT [Suck] in {8} = failure Solution?? 

– Belief-state: no fixed action sequence guarantees solution 

Relax requirement: 

– [Suck, Right, if [R,dirty] then Suck] 

– Select actions based on contingencies arising during execution. 

Time and space complexity are always considered with respect to some measure of 

the problem difficulty. In theoretical computer science, the typical measure is the size of the 

state space. 

In AI, where the graph is represented implicitly by the initial state and successor 

function, the complexity is expressed in terms of three quantities: 

b, the branching factor or maximum number of successors of any node; 

d, the depth of the shallowest goal node; and 

Figure 2.18 states and actions 
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m, the maximum length of any path in the state space. 

Search-cost - typically depends upon the time complexity but can also include the term 

for memory usage. 

Total–cost – It combines the search-cost and the path cost of the solution found. 

2.15 INFORMED SEARCH AND EXPLORATION 

Informed (Heuristic) Search Strategies 

Informed search strategy is one that uses problem-specific knowledge beyond the 

definition of the problem itself. It can find solutions more efficiently than uninformed strategy. 

Best-first search 

Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH 

algorithm in which a node is selected for expansion based on an evaluation function f(n). The 

node with lowest evaluation is selected for expansion, because the evaluation measures the 

distance to the goal. 

This can be implemented using a priority-queue, a data structure that will maintain the 

fringe in ascending order of f-values. 

2.16 HEURISTIC FUNCTIONS 

A heuristic function or simply a heuristic is a function that ranks alternatives in 

various search algorithms at each branching step basing on an available information in order 

to make a decision which branch is to be followed during a search. 

The key component of Best-first search algorithm is a heuristic function, denoted by 

h(n): h(n) = estimated cost of the cheapest path from node n to a goal node. 

For example, in Romania, one might estimate the cost of the cheapest path from Arad 

to Bucharest via a straight-line distance from Arad to Bucharest (Figure 2.19). 

Heuristic function are the most common form in which additional knowledge is 

imparted to the search algorithm. 

Greedy Best-first search 

Greedy best-first search tries to expand the node that is closest to the goal, on the 

grounds that this is likely to a solution quickly. 

It evaluates the nodes by using the heuristic function f(n) = h(n). 

Taking the example of Route-finding problems in Romania, the goal is to reach 

Bucharest starting from the city Arad. We need to know the straight-line distances to Bucharest 

from various cities as shown in Figure. For example, the initial state is In(Arad),and the straight 

line distance heuristic hSLD (In(Arad)) is found to be 366. 

Using the straight-line distance heuristic hSLD, the goal state can be reached faster. 
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Figure 2.20 progress of greedy best-first search 
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Figure shows the progress of greedy best-first search using hSLD to find a path from 

Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it is closer 

to Bucharest than either Zerind or Timisoara. The next node to be expanded will be Fagaras, 

because it is closest. Fagaras in turn generates Bucharest, which is the goal. 

Properties of greedy search 
 

o Complete: No–can get stuck in loops, e.g., Iasi !Neamt !Iasi !Neamt ! 

Complete in finite space with repeated-state checking 

o Time: O(bm), but a good heuristic can give dramatic improvement 

o Space: O(bm) - keeps all nodes in memory 

o Optimal: No 

Greedy best-first search is not optimal, and it is incomplete. 
 

The worst-case time and space complexity is O(bm),where m is the maximum depth of 

the search space. 

A* SEARCH 
 

A* Search is the most widely used form of best-first search. The evaluation function 

f(n) is obtained by combining 

(1) g(n) = the cost to reach the node, and 

(2) h(n) = the cost to get from the node to the goal : 

f(n) = g(n) + h(n). 
 

A* Search is both optimal and complete. A* is optimal if h(n) is an admissible heuristic. 

The obvious example of admissible heuristic is the straight-line distance hSLD. It cannot be an 

overestimate. 

A* Search is optimal if h(n) is an admissible heuristic – that is, provided that h(n) never 

overestimates the cost to reach the goal. 

An obvious example of an admissible heuristic is the straight-line distance hSLD that 

we used in getting to Bucharest. The progress of an A* tree search for Bucharest is shown in 

Figure 
 

The values of ‘g ‘ are computed from the step costs shown in the Romania map(figure). 

Also the values of hSLD are given in Figure 
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2.17 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS 
 

o In many optimization problems, the path to the goal is irrelevant; the goal state itself 

is the solution 

o For example, in the 8-queens problem, what matters is the final configuration of 

queens, not the order in which they are added. 

o In such cases, we can use local search algorithms. They operate using a single 

current state (rather than multiple paths) and generally move only to neighbors of 

that state. 

 

Figure 2.22 Example A* Search 
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o The important applications of these class of problems are (a) integrated-circuit design, 

(b) Factory-floor layout, (c) job-shop scheduling, (d) automatic programming, (e) 

telecommunications network optimization, (f) Vehicle routing, and (g) portfolio 

management. 

Key advantages of Local Search Algorithms 

(1) They use very little memory – usually a constant amount; and 

(2) they can often find reasonable solutions in large or infinite(continuous) state spaces 

for which systematic algorithms are unsuitable. 

2.18 OPTIMIZATION PROBLEMS 

In addition to finding goals, local search algorithms are useful for solving pure 

optimization problems, in which the aim is to find the best state according to an objective 

function. 

State Space Landscape 

To understand local search, it is better explained using state space landscape as shown 

in Figure. 

A landscape has both “location” (defined by the state) and “elevation” (defined by 

the value of the heuristic cost function or objective function). 

If elevation corresponds to cost, then the aim is to find the lowest valley – a global 

minimum; if elevation corresponds to an objective function, then the aim is to find the highest 

peak – a global maximum. 

Local search algorithms explore this landscape. A complete local search algorithm 

always finds a goal if one exists; an optimal algorithm always finds a global 

minimum/maximum. 
 

Figure 2.23 A one dimensional state space landscape in which elevation 

corresponds to the objective function. The aim is to find the global maximum. 

Hill climbing search modifies the current state to try to improve it, as shown 

by the arrow. The various topographic features are defined in the text 
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Hill-climbing search 
 

The hill-climbing search algorithm as shown in figure, is simply a loop that continually 

moves in the direction of increasing value – that is, uphill. It terminates when it reaches a 

“peak” where no neighbor has a higher value. 
 

 
 

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor 

state without thinking ahead about where to go next. Greedy algorithms often perform quite 

well. Problems with hill-climbing 

Hill-climbing often gets stuck for the following reasons : 
 

• Local maxima: a local maximum is a peak that is higher than each of its neighboring 

states, but lower than the global maximum. Hill-climbing algorithms that reach the 

vicinity of a local maximum will be drawn upwards towards the peak, but will then be 

stuck with nowhere else to go 

• Ridges: A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima 

that is very difficult for greedy algorithms to navigate. 

• Plateaux: A plateau is an area of the state space landscape where the evaluation 

function is flat. It can be a flat local maximum, from which no uphill exit exists, or a 

shoulder, from which it is possible to make progress. 

Figure 2.24 The hill-climbing search algorithm (steepest ascent version), which is 

the most basic local search technique. At each step the current node is replaced 

by the best neighbor; the neighbor with the highest VALUE. If the heuristic cost 

estimate h is used, we could find the neighbor with the lowest h. 

current ←MAKE-NODE(INITIAL-STATE[problem]) 

loop do 

neighbor ← a highest valued successor of current 

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current] 

current ←neighbor 

function HILL-CLIMBING( problem) return a state that is a local maximum 

input: problem, a problem 

local variables: current, a 

node. 

neighbor, a node. 
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Hill-climbing variations 
 

➢ Stochastic hill-climbing 

o Random selection among the uphill moves. 

o The selection probability can vary with the steepness of the uphill move. 

➢ First-choice hill-climbing 

o cfr. stochastic hill climbing by generating successors randomly until a better 

one is found. 

➢ Random-restart hill-climbing 

o Tries to avoid getting stuck in local maxima. 

Simulated annealing search 
 

A hill-climbing algorithm that never makes “downhill” moves towards states with 

lower value (or higher cost) is guaranteed to be incomplete, because it can stuck on a local 

maximum. In contrast, a purely random walk –that is, moving to a successor choosen uniformly 

at random from the set of successors – is complete, but extremely inefficient. 

Simulated annealing is an algorithm that combines hill-climbing with a random walk 

in someway that yields both efficiency and completeness. 

Figure shows simulated annealing algorithm. It is quite similar to hill climbing. Instead 

of picking the best move, however, it picks the random move. If the move improves the 

situation, it is always accepted. Otherwise, the algorithm accepts the move with some 

probability less than 1. The probability decreases exponentially with the “badness” of the move 

– the amount E by which the evaluation is worsened. 

Figure 2.25 Illustration of why ridges cause difficulties for hill-climbing. The grid 

of states(dark circles) is superimposed on a ridge rising from left to right, creating 

a sequence of local maxima that are not directly connected to each other. From 

each local maximum, all the available options point downhill. 
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Simulated annealing was first used extensively to solve VLSI layout problems in the early 

1980s. It has been applied widely to factory scheduling and other large-scale optimization 

tasks. 
 

 
 

Genetic algorithms 
 

A Genetic algorithm (or GA) is a variant of stochastic beam search in which successor 

states are generated by combining two parent states, rather than by modifying a single state 

Like beam search, Gas begin with a set of k randomly generated states, called the 

population. Each state, or individual, is represented as a string over a finite alphabet – most 

commonly, a string of 0s and 1s. For example, an 8 8-quuens state must specify the positions 

of 8 queens, each in a column of 8 squares, and so requires 8 x log2 8 = 24 bits. 
 

Figure 2.26 The simulated annealing search algorithm, a version of stochastic 

hill climbing where some downhill moves are allowed. 

Figure 2.27 Genetic algorithm 
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Figure shows a population of four 8-digit strings representing 8-queen states. The 

production of the next generation of states is shown in Figure 

In (b) each state is rated by the evaluation function or the fitness function. 
 

In (c),a random choice of two pairs is selected for reproduction, in accordance with 

the probabilities in (b). 

Figure describes the algorithm that implements all these steps. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

2.29 CONSTRAINT SATISFACTION PROBLEMS(CSP) 
 

A Constraint Satisfaction Problem(or CSP) is defined by a set of variables,X1,X2, 

….Xn, and a set of constraints C1,C2,…,Cm. Each variable Xi has a nonempty domain D,of 

possible values. 

Each constraint Ci involves some subset of variables and specifies the allowable 

combinations of values for that subset. 

A State of the problem is defined by an assignment of values to some or all of the 

variables,{Xi = vi,Xj = vj,…}. An assignment that does not violate any constraints is called a 

consistent or legal assignment. A complete assignment is one in which every variable is 

mentioned, and a solution to a CSP is a complete assignment that satisfies all the constraints. 

Some CSPs also require a solution that maximizes an objective function. 

function GENETIC_ALGORITHM( population, FITNESS-FN) return an individual 

input: population, a set of individuals 

FITNESS-FN, a function which determines the quality of the individual 

repeat 

new_population←empty set 

loop for ifrom 1 to SIZE(population) do 

x ←RANDOM_SELECTION(population, FITNESS_FN) 

y ←RANDOM_SELECTION(population, 

FITNESS_FN) 

child ←REPRODUCE(x,y) 

if (small random probability) then child 

MUTATE(child ) add child to new_population 

population ←new_population 

until some individual is fit enough or enough time has elapsed 

return the best individual 

Figure 2.28 A genetic algorithm. 
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Example for Constraint Satisfaction Problem 
 

Figure shows the map of Australia showing each of its states and territories. We are 

given the task of coloring each region either red, green, or blue in such a way that the 

neighboring regions have the same color. To formulate this as CSP, we define the variable to 

be the regions 

:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is the set 

{red,green,blue}.The constraints require neighboring regions to have distinct colors; for 

example, the allowable combinations for WA and NT are the pairs 

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. 
 

The constraint can also be represented more succinctly as the inequality WA not = NT, 

provided the constraint satisfaction algorithm has some way to evaluate such expressions.) 

There are many possible solutions such as 

{ WA = red, NT = green, Q = red, NSW = green, V = red,SA = blue,T = red}. 
 

It is helpful to visualize a CSP as a constraint graph, as shown in Figure 2.29. The nodes 

of the graph corresponds to variables of the problem and the arcs correspond to constraints. 
 

Figure 2.29 Principle states and territories of Australia. Coloring this map can be 

viewed as a constraint satisfaction problem. The goal is to assign colors to each region 

so that no neighboring regions have the same color. 
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CSP can be viewed as a standard search problem as follows: 
 

➢ Initial state: the empty assignment {},in which all variables are unassigned. 

➢ Successor function: a value can be assigned to any unassigned variable, provided that 

it does not conflict with previously assigned variables. 

➢ Goal test: the current assignment is complete. 

➢ Path cost: a constant cost(E.g.,1) for every step. 
 

Every solution must be a complete assignment and therefore appears at depth n if 

there are n variables. 

Depth first search algorithms are popular for CSPs 
 

Varieties of CSPs 

(i) Discrete variables Finite domains 
 

The simplest kind of CSP involves variables that are discrete and have finite domains. 

Map coloring problems are of this kind. The 8-queens problem can also be viewed as finite- 

domain 

CSP, where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1, 

….8 and each variable has the domain {1,2,3,4,5,6,7,8}. If the maximum domain size of any 

Figure 2.30 Mapping Problem 
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variable in a CSP is d, then the number of possible complete assignments is O(dn) – that is, 

exponential in the number of variables. Finite domain CSPs include Boolean CSPs, whose 

variables can be either true or false. Infinite domains 

Discrete variables can also have infinite domains – for example, the set of integers or 

the set of strings. With infinite domains, it is no longer possible to describe constraints by 

enumerating all allowed combination of values. Instead a constraint language of algebric 

inequalities such as Startjob1 + 5 <= Startjob3. 

(ii) CSPs with continuous domains 
 

CSPs with continuous domains are very common in real world. For example in 

operation research field, the scheduling of experiments on the Hubble Telescope requires very 

precise timing of observations; the start and finish of each observation and manoeuvre are 

continuous-valued variables that must obey a variety of astronomical, precedence and power 

constraints. The best known category of continuous-domain CSPs is that of linear 

programming problems, where the constraints must be linear inequalities forming a convex 

region. Linear programming problems can be solved in time polynomial in the number of 

variables. 

Varieties of constraints 
 

(i) unary constraints involve a single variable. 

Example : SA # green 

(ii) Binary constraints involve paris of variables. 

Example : SA # WA 

(iii) Higher order constraints involve 3 or more variables. Example :cryptarithmetic puzzles. 
 

Figure 2.31 cryptarithmetic puzzles. 

 



 

lOMoAR cPSD|24943912 

 

 

 

 
 

 

 

Backtracking Search for CSPs 
 

The term backtracking search is used for depth-first search that chooses values for 

one variable at a time and backtracks when a variable has no legal values left to assign. The 

algorithm is shown in figure 

Figure 2.32 Cryptarithmetic puzzles-Solution 

Figure 2.33 Numerical Solution 
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Figure 2.34 A simple backtracking algorithm for constraint satisfaction problem. The 

algorithm is modeled on the recursive depth-first search 

Figure 2.34 Part of the search tree generated by simple backtracking for the map- 

coloring problem 

Figure 2.35 Part of search tree generated by simple backtracking for the map 

coloring problem. 
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Forward checking 
 

One way to make better use of constraints during search is called forward checking. 

Whenever a variable X is assigned, the forward checking process looks at each unassigned 

variable Y that is connected to X by a constraint and deletes from Y ’s domain any value that 

is inconsistent with the value chosen for X. Figure 5.6 shows the progress of a map-coloring 

search with forward checking. 
 

 

Constraint propagation 
 

Although forward checking detects many inconsistencies, it does not detect all of them. 
 

Constraint propagation is the general term for propagating the implications of a 

constraint on one variable onto other variables. 

Arc Consistency 
 

Figure 2.36 The progress of a map-coloring search with forward checking. WA = red 

is assigned first; then forward checking deletes red from the domains of the 

neighboring variables NT and SA. After Q = green, green is deleted from the domain 

of NT, SA, and NSW. After V = blue, blue, is deleted from the domains of NSW and 

SA, leaving SA with no legal values. 

Figure 2.37 Arc Consistency 
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k-Consistency 
 

Local Search for CSPs 
 

The Structure of Problems Problem Structure 
 

Independent Subproblems 
 

Figure 2.38 Arc Consistency –CSP 

Figure 2.39 Independent Subproblems 
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Tree-Structured CSPs 
 

 
 

2.30 ADVERSARIAL SEARCH 
 

Competitive environments, in which the agent’s goals are in conflict, give rise to 

adversarial search problems – often known as games. 

Games 

Mathematical Game Theory, a branch of economics, views any multiagent 

environment as a game provided that the impact of each agent on the other is “significant”, 

regardless of whether the agents are cooperative or competitive. In, AI, “games” are 

deterministic, turn-taking, two-player, zero-sum games of perfect information. This means 

deterministic, fully observable environments in which there are two agents whose actions must 

alternate and in which the utility values at the end of the game are always equal and opposite. 

For example, if one player wins the game of chess(+1),the other player necessarily loses(-1). It 

is this opposition between the agents’ utility functions that makes the situation adversarial. 

Formal Definition of Game 
 

We will consider games with two players, whom we will call MAX and MIN. MAX 

moves first, and then they take turns moving until the game is over. At the end of the game, 

points are awarded to the winning player and penalties are given to the loser. A game can be 

formally defined as a search problem with the following components: 

o The initial state, which includes the board position and identifies the player to move. 

o A successor function, which returns a list of (move, state) pairs, each indicating a 

legal move and the resulting state. 

Figure 2.40 Tree-Structured CSPs 
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o A terminal test, which describes when the game is over. States where the game has 

ended are called terminal states. 

o A utility function (also called an objective function or payoff function), which give a 

numeric value for the terminal states. In chess, the outcome is a win, loss, or draw, with 

values+1,-1, or 0. he payoffs in backgammon range from +192 to -192. 

Game Tree 
 

The initial state and legal moves for each side define the game tree for the game. 

Figure 2.18 shows the part of the game tree for tic-tac-toe (noughts and crosses). From the 

initial state, MAX has nine possible moves. Play alternates between MAX’s placing an X and 

MIN’s placing a 0 until we reach leaf nodes corresponding to the terminal states such that one 

player has three in a row or all the squares are filled. He number on each leaf node indicates 

the utility value of the terminal state from the point of view of MAX; high values are assumed 

to be good for MAX and bad for MIN. It is the MAX’s job to use the search tree (particularly 

the utility of terminal states) to determine the best move. 
 

 
 

Optimal Decisions in Games 
 

In normal search problem, the optimal solution would be a sequence of move leading 

to a goal state – a terminal state that is a win. In a game, on the other hand, MIN has something 

Figure 2.41 A partial search tree. The top node is the initial state, and MAX 

move first, placing an X in an empty square. 
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to say about it, MAX therefore must find a contingent strategy, which specifies MAX’s 

move in the initial state, then MAX’s moves in the states resulting from every possible 

response by MIN, then MAX’s moves in the states resulting from every possible response by 

MIN those moves, and so on. An optimal strategy leads to outcomes at least as good as any 

other strategy when one is playing an infallible opponent. 
 

 

 

Figure 2.42 Optimal Decisions in Games 

Figure 2.43 MAX-VALUE and MIN-VALUE 
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The minimax Algorithm 
 

The minimax algorithm computes the minimax decision from the current state. It uses 

a simple recursive computation of the minimax values of each successor state, directly 

implementing the defining equations. The recursion proceeds all the way down to the leaves of 

the tree, and then the minimax values are backed up through the tree as the recursion unwinds. 

For example in Figure 2.19,the algorithm first recourses down to the three bottom left nodes, 

and uses the utility function on them to discover that their values are 3, 12, and 8 respectively. 

Then it takes the minimum of these values, 3, and returns it as the backed-up value of node B. 

A similar process gives the backed up values of 2 for C and 2 for D. Finally, we take the 

maximum of 3, 2, and 2 to get the backed-up value of 3 at the root node. The minimax algorithm 

performs a complete depth-first exploration of the game tree. If the maximum depth of the tree 

is m, and there are b legal moves at each point, then the time complexity of the minimax 

algorithm is O(bm). The space complexity is O(bm) for an algorithm that generates successors 

at once. 

Alpha-Beta Pruning 
 

The problem with minimax search is that the number of game states it has to examine 

is exponential in the number of moves. Unfortunately, we can’t eliminate the exponent, but 

Figure 2.44 An algorithm for calculating minimax decisions. It returns the action 

corresponding to the best possible move, that is, the move that leads to the outcome 

with the best utility, under the assumption that the opponent plays to minimize 

utility. The functions MAX-VALUE and MIN-VALUE go through the whole game 

tree, all the way to the leaves, to determine the backed-up value of a state. 
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we can effectively cut it in half. By performing pruning, we can eliminate large part of the tree 

from consideration. We can apply the technique known as alpha beta pruning, when applied 

to a minimax tree, it returns the same move as minimax would, but prunes away branches that 

cannot possibly influence the final decision. 

Alpha Beta pruning gets its name from the following two parameters that describe 

bounds on the backed-up values that appear anywhere along the path: 

o α : the value of the best (i.e., highest-value) choice we have found so far at any 

choice point along the path of MAX. 

o β: the value of best (i.e., lowest-value) choice we have found so far at any choice 

point along the path of MIN. 

Alpha Beta search updates the values of α and β as it goes along and prunes the 

remaining branches at anode(i.e., terminates the recursive call) as soon as the value of the 

current node is known to be worse than the current α and β value for MAX and MIN, 

respectively. The complete algorithm is given in Figure. The effectiveness of alpha-beta 

pruning is highly dependent on the order in which the successors are examined. It might be 

worthwhile to try to examine first the successors that are likely to be the best. In such case, it 

turns out that alpha-beta needs to examine only O(bd/2) nodes to pick the best move, instead of 

O(bd) for minimax. This means that the effective branching factor becomes sqrt(b) instead of b 

– for chess,6 instead of 35. Put an other way alpha-beta cab look ahead roughly twice as far as 

minimax in the same amount of time. 
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Key points in Alpha-beta Pruning 
 

• Alpha: Alpha is the best choice or the highest value that we have found at any 

instance along the path of Maximizer. The initial value for alpha is – ∞. 

• Beta: Beta is the best choice or the lowest value that we have found at any instance 

along the path of Minimizer. The initial value for alpha is + ∞. 

• The condition for Alpha-beta Pruning is that α >= β. 
 

• Each node has to keep track of its alpha and beta values. Alpha can be updated only 

when it’s MAX’s turn and, similarly, beta can be updated only when it’s MIN’s chance. 

• MAX will update only alpha values and MIN player will update only beta values. 
 

• The node values will be passed to upper nodes instead of values of alpha and beta during 

go into reverse of tree. 

• Alpha and Beta values only be passed to child nodes. 
 

Working of Alpha-beta Pruning 
 

1. We will first start with the initial move. We will initially define the alpha and beta 

values as the worst case i.e. α = -∞ and β= +∞. We will prune the node only when alpha 

becomes greater than or equal to beta. 

Figure 2.45 The alpha beta search algorithm. These routines are the same as the 

minimax routines in figure 2.20,except for the two lines in each of MIN-VALUE 

and MAX-VALUE that maintain α and β 
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2. Since the initial value of alpha is less than beta so we didn’t prune it. Now it’s turn for 

MAX. So, at node D, value of alpha will be calculated. The value of alpha at node D 

will be max (2, 3). So, value of alpha at node D will be 3. 

3. Now the next move will be on node B and its turn for MIN now. So, at node B, the 

value of alpha beta will be min (3, ∞). So, at node B values will be alpha= – ∞ and beta 

will be 3. 
 

 
 

In the next step, algorithms traverse the next successor of Node B which is node E, and 

the values of α= -∞, and β= 3 will also be passed. 

Figure 2.46 Step 1 Alpha-beta Pruning 

Figure 2.47 Step 2 Alpha-beta Pruning 
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4. Now it’s turn for MAX. So, at node E we will look for MAX. The current value of 

alpha at E is – ∞ and it will be compared with 5. So, MAX (- ∞, 5) will be 5. So, at 

node E, alpha = 5, Beta = 5. Now as we can see that alpha is greater than beta which 

is satisfying the pruning condition so we can prune the right successor of node E and 

algorithm will not be traversed and the value at node E will be 5. 
 

 
 

6. In the next step the algorithm again comes to node A from node B. At node A alpha 

will be changed to maximum value as MAX (- ∞, 3). So now the value of alpha and 

beta at node A will be (3, + ∞) respectively and will be transferred to node C. These 

same values will be transferred to node F. 

7. At node F the value of alpha will be compared to the left branch which is 0. So, MAX 

(0, 3) will be 3 and then compared with the right child which is 1, and MAX (3,1) = 3 

still α remains 3, but the node value of F will become 1. 
 

Figure 2.48 Step 3 Alpha-beta Pruning 

Figure 2.49 Step 4 Alpha-beta Pruning 
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8. Now node F will return the node value 1 to C and will compare 

to beta value at C. Now its turn for MIN. So, MIN (+ 

∞, 1) will be 1. Now at node C, α= 3, and β= 1 and alpha is 

greater than beta which again satisfies the pruning condition. 

So, the next successor of node C i.e. G will be pruned and the 

algorithm didn’t compute the entire subtree G. 

 

 

Now, C will return the node value to A and the best value of A 

will be MAX (1, 3) will be 3. 
 

 

The above represented tree is the final tree which is showing the nodes which are computed 

and the nodes which are not computed. So, for this example the optimal value of the 

maximizer will be 3. 

Figure 2.50 Step 5 Alpha-beta Pruning 

Figure 2.51 Step 6 Alpha-beta Pruning 


